Cluster analysis of beef production distribution in Europe
Abstract
Fragmentation and poor connection within the beef production industry affects its positive contribution to the economy, land management, and development of rural areas. Despite the third place in world beef production European countries have achieved one of the best results in environmental management of cattle breeding worldwide. On the other side there is a huge variability of beef and veal production on national and regional level, reflecting the varied geographical, economic and social requirements of different European regions. Even in case of moderate beef consumption (16 kg per capita per year) in the European Union, meat as the source of proteins of animal origin is connected to higher value added, higher employment, profit and incomes in agriculture comparing to crop production. On the other side it also requires higher investments and represents a greater risk. Different levels of agrarian subsidies and the efficiency of their use exacerbate the differences in the production of beef and veal in the countries of the European Union. In submitted paper we investigated beef production distribution similarity of selected countries in Europe. Quantitative approach was applied using cluster analysis in accordance with the Ward's minimum variance method with previous computation of similarity of the territories through the Euclidean distance. Three clusters representing the beef production similarity among the explored countries were visualised by dendrograms within observed steps in the year 2008 and the year 2017. Order of similarity and dissimilarity in beef production according to the Euclidean distance values of all the possible pairs of the districts from the whole data set in observed countries was processed for examined period of time. Finally, the heat maps were constructed to demonstrate the similaritity between each pair of the comprised countries. Obtained results could serve as a valuable resource for meat producers to understand the time dynamics impact and differences in level of beef production in European countries.
References
Alemu, A. W., Amiro, B. D., Bittman, S., MacDonald, D., Ominski, K. H. 2016. A typological characterization of Canadian beef cattle farms based on a producer survey. Canadian Journal of Animal Science, vol. 96, no. 2, p. 187-202. https://doi.org/10.1139/cjas-2015-0060
Avadi, A., Nitschelm, L., Corson, M., Vertes, F. 2016. Data strategy for environmental assessment of agricultural regions via LCA: Case study of a French catchment. International Journal of Life Cycle Assessment, vol. 21, no. 4, p. 476-491. https://doi.org/10.1007/s11367-016-1036-6
Ball, G. H., Hall, D. J. 1965. Isodata, a Novel Method of Data Analysis and Pattern Classification [online]. Menlo Park, United States of America : Stanford Research Institute. [cit.2018-12-02] Available at: http://www.dtic.mil/dtic/tr/fulltext/u2/699616.pdf.
Bava, L., Sandrucci, A., Zucali, M., Guerci, M., Tamburini, A. 2014. How can farming intensification affect the environmental impact of milk production? Journal of Dairy Science, vol. 97, no. 7, p. 4579-4593. https://doi.org/10.3168/jds.2013-7530
Cottle, D. J., Kahn, L. 2014. Beef Cattle Production and Trade. Collingwood, Australia : Csiro Publishing, 574 p. ISBN: 9780643109889.
Domingues, J. P., Ryschawy, J., Bonaudo, T., Gabrielle, B., Tichit, M. 2018. Unravelling the physical, technological and economic factors driving the intensification trajectories of livestock systems. Animal, vol. 12, no. 8, p. 1652-1661. https://doi.org/10.1017/S1751731117003123
Eurostat. 2017. Animal Production Statistics [online]. Luxembourg, Luxembourg : Eurostat. Available at: https://ec.europa.eu/eurostat/cache/metadata/en/apro_mt_esms.htm.
Eurostat. 2018. Bovine population: Annual data [online]. Luxembourg, Luxembourg : Eurostat. Available at: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=apro_mt_pann&lang=en.
Eurostat. 2018. Slaughtering in slaughterhouses: Annual data [online]. Luxembourg, Luxembourg : Eurostat. Available at: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=apro_mt_pann&lang=en.
Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development, United Nations International Children's Emergency Fund, World Food Programme, World Health Organization. 2018. The State of Food Security and Nutrition in the World 2018 [online]. In Building climate resilience for food security and nutrition. Rome : Food and Agriculture Organization of the United Nations, 202 p. ISBN 978-92-5-130571-3. Available at: http://www.fao.org/3/I9553EN/i9553en.pdf.
Fiore, M., Spada, A., Conte, F., Pellegrini, G. 2018. GHG and cattle farming: CO-assessing the emissions and economic performances in Italy. Journal of Cleaner Production, vol. 172, p. 3704-3712. https://doi.org/10.1016/j.jclepro.2017.07.167
Gábor, M., Trakovická, A., Miluchová, M., Moravčíková, N. 2010. Genetic markers as one of tools for production of tenderness meat in cattle. Potravinarstvo, vol. 10, no. 4, p. 16-21. https://doi.org/10.5219/102
Gálik, J. 2018. Jatočný hovädzí dobytok a jatočné teľatá, Situačná a výhľadová správa k 31.12.2017 [online]. NPPC-VÚEPP Bratislava, vol. 26, no. 1, 67 p. Available at: http://www.vuepp.sk/dokumenty/komodity/2018/Hd04_18.pdf.
Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., Tempio, G. 2013. Tackling climate change through livestock - A global assessment of emissions and mitigation opportunities [online]. Rome, Italy : Food and Agriculture Organization of the United Nations (FAO), 115 p. ISBN 978-92-5-107920-1. Available at: http://www.fao.org/3/a-i3437e.pdf.
Grodea, M. 2016. Milk and Beef Production Volatility in Romania-Domestic Supply Stability Factor. Scientific Papers-Series Management Economic Engineering in Agriculture and Rural Development, vol. 16, no. 1, p. 193-196.
Hocquette, J. F., Ellies-Oury, M. P., Lherm, M., Pineau, Ch., Deblitz, C., Farmer, L. 2018. Current situation and future prospects for beef production in Europe - A review. Asian-Australasian Journal of Animal Science, vol. 31, no. 7, p. 1017-1035. https://doi.org/10.5713/ajas.18.0196
Hochuli, A., Raemy, D., Hofer, H., Fluckiger, D. 2018. Swiss private-label branded beef: brand credibility and consumer trust. Agrarforschung Schweiz, vol. 9, no. 9, p. 288-295. Available at: https://www.agrarforschungschweiz.ch/artikel/download.php?filename=2018_09_2409.pdf.
Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A. 2014. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software, vol. 6, no. 6, p. 1-36. https://doi.org/10.18637/jss.v061.i06
Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A. 2015. Package NbClust. Vienna, Austria : R Foundation for Statistical Computing. Available at: https://cran.r-project.org/web/packages/NbClust/NbClust.pdf.
Ihle R., Dries L., Jongeneel R., Venus T., Wesseler J. 2017. Research for Agri-Committee-The EU Cattle Sector: Challenges and Opportunities-Milk and Meat [online]. Brussels, Belgium : European Parliament, DG for Internal Policies, 169 p. ISBN: 978-92-846-0601-6. Available at: http://www.europarl.europa.eu/RegData/etudes/STUD/2017/585911/IPOL_STU(2017)585911_EN.pdf.
International Organization for Standardization 3166. 2013. International Organization for Standardization 3166 - International Standard for country codes and codes for their subdivisions.
Jasińska-Biliczak, A., Sitkowska, R. 2014. Influence of small and medium enterprises sector at the change of innovation potential of Polish regions. Grant Journal, vol. 3, no. 1, p. 57-61. Available at: http://www.grantjournal.com/issue/0301/PDF/0301sitkowska.pdf.
Kordoš, M. 2015. The role and significance of clusters within the EU industry policy. Acta Oeconomica Universitatis Selye, vol. 4, no. 1, p. 53-63.
Kowal, J., Jasińska-Biliczak, A., Hafner, J. 2016. Innovative Capacity in Small Regional Enterprises in Transition Economies: An Exploratory Study in Poland. In 22nd Americas Conference on Information Systems (AMCIS). San Diego, United States of America : Association for Information Systems. ISBN 978-0-9966831-2-8.
Mauracher, Ch., Valentini, M. 2006. Tipicità e convergenza alimentare dei PECO. Economia Agro-Alimentare, vol. 3, no. 22, p. 115-136.
McClain, J. O., Rao, V. R. 1975. Clustisz: A Program to Test for the Quality of Clustering of a Set of Objects. Journal of Marketing Research, vol. 12, no. 4, p. 456-460. Available at: https://www.jstor.org/stable/3151097.
Mesias, F. J., Escribano, M., de Ledesma, A. R., Pulido, F. 2005. Consumers' preferences for beef in the Spanish region of Extremadura: a study using conjoint analysis. Journal of the Science of Food and Agriculture, vol. 85, no. 14, p. 2487-2494. https://doi.org/10.1002/jsfa.2283
Milligan, G. W. 1981. A Monte Carlo Study of Thirty Internal Criterion Measures for Cluster Analysis. Psychometrika, vol. 46, no. 2, p. 187-199. https://doi.org/10.1007/BF02293899
Ministrstvo pôdohospodártsva a rozvoja vidieka Slovenskej republiky. 2017. Správa o poľnohospodárstve a potravinárstve v Slovenskej republike za rok 2016 (Zelená správa) Report on Agriculture and Food Industry in the Slovak Republic for 2016 (Green report). Bratislava, Slovakia : Ministry of Agriculture and Rural Development of the Slovak Republic, 325 p. Available at: http://www.vuepp.sk/dokumenty/zelena/zelena2017.pdf. (In Slovak)
Mura, L., Gasparikova, V. 2010. Penetration of small and medium sized food companies on foreign markets. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, vol. 58, no. 3, p. 157-163. https://doi.org/10.11118/actaun201058030157
Mura, L., Mazák, M. 2018. Innovative activities of family SMEs: case study of the Slovak regions. On-line Journal Modelling the New Europe, vol. 27, p. 132-147. https://doi.org/10.24193/OJMNE.2018.27.06
Oliver, M. A., Nute, G. R., Furnols, M. F. I., San Julian, R., Campo, M. M., Sanudo, C., Caneque, V., Guerrero, L., Alvarez, I., Diaz, M. T., Branscheid, W., Wicke, M., Montossi, F. 2006. Eating quality of beef, from different production systems, assessed by German, Spanish and British consumers. Meat Science, vol. 74, no. 3, p. 435-442. https://doi.org/10.1016/j.meatsci.2006.03.010
Paraschiv, A. 2016. Agrifood Sector Development Strategy for Medium and Long Term Horizon 2020-2030. Journal of Young Scientist, vol. 4, p. 73-76. Available at: http://journalofyoungscientist.usamv.ro/pdf/vol_IV_2016/art13.pdf.
Perea, J., Blanco-Penedo, I., Barba, C., Angon, E., Garcia, A. 2014. Organic Beef Farming in Spain: Typology According to Livestock Management and Economic Variables. Revista Cientifica-Facultad de Ciencias Veterinarias, vol. 24, no. 4, p. 347-354.
R Core Team. 2018. R: Language and Environment for Statistical Computing [online]. Vienna, Austria : R Foundation for Statistical Computing. Available at: https://www.R-project.org.
Regulation (EC) No 1165/2008 of the European Parliament and of the Council of 19 November 2008 concerning livestock and meat statistics and repealing Council Directives 93/23/EEC, 93/24/EEC and 93/25/EEC [online]. Official Journal of the European Union L, no. 321, 1. 12. 2018, p. 1-13. Available at: https://eur-lex.europa.eu/eli/reg/2008/1165/oj.
Sepulveda, W. S., Maza, M. T., Pardos, L. 2011. Aspects of quality related to the consumption and production of lamb meat. Consumers versus producers. Meat Science, vol. 87, no. 4, p. 366-372. https://doi.org/10.1016/j.meatsci.2010.11.013
Schnettler, B., Silva, R., Sepulveda, N. 2009. Utility to Consumers and Consumer Acceptance of Information on Beef Labels in Southern Chile. Chilean Journal of Agricultural Research, vol. 69, no. 3, p. 373-382. https://doi.org/10.4067/S0718-58392009000300010
Smith, S. B., Gotoh, Tk., Greenwood, P. L. 2018. Current situation and future prospects for global beef production: overview of special issue. Asian-Australasian Journal of Animal Sciences, vol. 31, no. 7, p. 927-932. https://doi.org/10.5713/ajas.18.0405
Soedjana, T. D. 2013. Participation Rate as a Basis for Measuring Food Security Status of Meat. Wartazoa-Buletin Ilmu Peternakan Dan Kesehatan Hewan Indonesia, vol. 23, no. 4, p. 166-175.
Soetaert, K. 2018. Package shape [online]. Vienna, Austria : R Foundation for Statistical Computing. Available at: https://cran.r-project.org/web/packages/shape/shape.pdf.
Stasiak-Betlejewska, R. 2015. Clusters as the element of eco-innovations promoting in the European construction on the Polish example. Acta Oeconomica Universitatis Selye, vol. 4, no. 2, p. 182-197.
Sturaro, E., Cocca, G., Gallo, L., Mrad, M., Ramanzin, M. 2009. Livestock systems and farming styles in Eastern Italian Alps: an on-farm survey. Italian Journal of Animal Science, vol. 8, no. 4, p. 541-554. https://doi.org/10.4081/ijas.2009.541
Tekień, A., Gutkowska, K., Żakowska-Biemans, S., Jóźwik, A., Krotki, M. 2018. Using cluster analysis and choice-based conjoint in research on consumers preferences towards animal origin food products. Theoretical review, results and recommendations. Animal Science Papers & Reports, vol. 36, no. 2, p. 171-184.
Thilmany, D. D., Umberger, W. J., Ziehl, A. R. 2006. Strategic market planning for value-added natural beef products: A cluster analysis of Colorado consumers. Renewable Agriculture and Food Systems, vol. 21, no. 3, p. 192-203. https://doi.org/10.1079/RAF2005143
Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W. H. A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., Schwartz, M., Venables, B. 2016. Package gplots [online]. Vienna, Austria : R Foundation for Statistical Computing. Available at: https://cran.r-project.org/web/packages/gplots/gplots.pdf.
World Summit on Food Security. 2009. Declaration of the World Summit on Food Security [online]. Rome, Italy : WSFS. 7 p. [cit.2018-12-02]. Available at: http://www.fao.org/fileadmin/templates/wsfs/Summit/Docs/Final_Declaration/WSFS09_Declaration.pdf.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).




















