Genetic diversity and relatedness among seven red deer (Cervus elaphus) populations

  • Lenka Maršálková Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Radoslav Židek Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Jaroslav Pokoradi Xcell Slovakia Breeding Services, s.r.o., 900 85 Vištuk - Fajdal
  • Jozef Golian Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra
  • Ľubomír Belej Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Hygiene and Food Safety, Tr. A. Hlinku 2, 949 76 Nitra
Keywords: genetic variability, relatedness, microsatellite loci, red deer (Cervus Elaphus)

Abstract

Deer (Cervidae) recently belongs to the most important species. The aim of presenting study was evaluation of genetic diversity and relationship within and among seven red deer populations from different origins - Czech Republic, Hungary, hybrids Hungary x New Zealand, Lithuania, New Zealand, Poland and Slovak Republic. This study was conducted to determine the levels of genetic variability and relationships among deer populations from a total of 637 animals originating from seven countries Czech Republic (50), Hungary (35), Hungary x New Zealand hybrids (67), Lithuania (26), New Zealand (82), Poland (347) and Slovak Republic (30).  We used the hair bulbs as a source of DNA.  In total, 213 alleles were observed from the 10 loci surveyed. The number of alleles per locus ranged from 11 (IOBT965) to 35 (T156, RT13). Genetic diversity and relatedness among red deer populations has been performed on a total of 637 animals. A panel of 10 microsatellite markers used in deer were optimized. On the basis of this panel of microsatellites we were investigated genetic variability and relationships by using statistical and graphical programmes. We evaluated how close populations are to each other and their genetic admixture. Molecular genetic data combined with evaluation in statistical programmes could lead to a complex view of populations. 


References

Barendse, W., Armitage, S. M., Kossarek, L. M., Shalom, A., Kirkpatrick, B. W., Ryan, A. M., Clayton, D., Li, L., Neibergs, H. L., Zhang, N., et al. 1994. A genetic linkage map of the bovine genome. Nature Genetics. vol. 6, no. 3, p. 227-235. http://dx.doi.org/10.1038/ng0394-227  PMid:8012383

 

Buchanan, F. C., Adams, L. J., Littlejohn, R. P., Maddox, J. F., Crawford, A. M. 1994. Determination of evolutionary relationships among sheep breeds using microsatellite. Genomics. vol. 22, no. 2, p. 397-403. http://dx.doi.org/10.1006/geno.1994.1401  PMid:7806227

 

Buchanan, F. C., Galloway, S. M., Crawford, A. M. 1994. Ovine microsatellites at the OarFCB5, OarFCBl9, OarFCB20, OarFCB48, OarFCBl29 and OarFCB226 loci. Animal Genetics. vol. 25, no. 1, p. 60.  PMid:8161031

 

Cosse, M., Gonzalez, S., Maldonado, J. E. 2007. Cross-amplification tests of ungulate primers in the endangered Neotropical pampas deer (Ozotoceros bezoarticus). Genetics and Molecular Research. vol. 6, no. 4, p. 1118-1122. PMid:18273805

 

Ernst, M., Kliment, J., Levý, E., Kourková, L., Stejskal, M. 2008. Populace bílých jelenů - Využití mikrosatelitných analýz při šlechtění populace bílých jelenů u LČR. Edice Grantové služby LČR, Hradec Králové. p. 28.  ISBN 978-80-86945-01-9.

 

Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author.  Department of Genetics, University of Washington, Seattle.

 

Franklin, I. R. 1980. Evolutionary change in small populations. Conservation biology: an evolutionary-ecological perspective. Soule´ ME and Wilcox BA, editors; Sunderland (MA: Sinauer Associates). p. 135-149.

 

Frantz, A. C., Hamann, J. L., Klein, F. 2008. Fine-scale genetic structure of red deer (Cervus elaphus) in a French temperate forest. European Journal of Wildlife Research. vol. 54, no. 1, p. 44-52. http://dx.doi.org/10.1007/s10344-007-0107-1

 

Huson, D. H., Richter, D. C., Rausch, C., Dezulian, T., Franz, M., Rupp, R. 2007. Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics. vol. 8, p. 460. http://dx.doi.org/10.1186/1471-2105-8-460  PMid:18034891

 

Jones, K. C., Levine, K. F., Banks, J. D. 2002. Characterization of 11 polymorphic tetranucleotide microsatellites for forensic applications in California elk (Cervus elaphus canadensis). Molecular Ecology. vol. 2, no. 4, p. 425-427.  http://dx.doi.org/10.1046/j.1471-8286.2002.00264.x

 

Kuehn, R., Schroeder, W., Pirchner, F., Rottmann, O. 2003. Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conservation Genetics. vol. 4, no. 2, p. 157-166. http://dx.doi.org/10.1023/A:1023394707884  

 

Liu, K., Muse, S. V. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics. vol. 21, no. 9, p. 2128-2129. http://dx.doi.org/10.1093/bioinformatics/bti282  PMid:15705655

 

Maršálková, L., Židek, R., Pokorádi, J. 2010. Genetic and statistical analysis of founder lines in red deer population. Acta fytotechnica et zootechnica. vol. 13, no. 1, p. 24-28.

 

Maudet, C., Luikart, G., Taberlet, P. 2002. Genetic diversity and assignment tests among seven French cattle breeds based on microsatellite DNA analysis. Journal of Animal Science. vol. 80, no. 4, p. 942-950.  PMid:12002331

 

Nei, M., Tajima, F., Tateno, Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution. vol. 19, no. 2, p. 153-170. http://dx.doi.org/10.1007/BF02300753  PMid:6571220

 

Pérez-Espona, S., Pérez-Barbería F. J., Mcleod, J. E., Jiggins, C. D., Godon, I. J., Pemberton, J. M. 2008. Landscape features affect gene flow of Scottich Highland red deer (Cervus elaphus). Molecular Ecology. vol. 17, no. 4, p. 981-996. http://dx.doi.org/10.1111/j.1365-294X.2007.03629.x  PMid:18261043

 

Poetsch, M., Seefeldt, S., Maschke, M., Lignitz, E. 2001. Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer - possible employment in forensic applications. Forensic Science International. vol. 116, no. 1, p. 1-8. http://dx.doi.org/10.1016/S0379-0738(00)00337-6  PMid:11118746

 

Saitbekova, N., Gaillard, C., Obexer-Ruff, G., Dolf, G. 1999. Genetic diversity in Swiss goat breeds based on microsatellite analysis. Animal Genetics. vol. 30, no. 1, p. 36-41. http://dx.doi.org/10.1046/j.1365-2052.1999.00429.x  PMid:10050281

 

Schmid, M., Saitbekova, N., Gaillard, C., Dolf, G. 1999. Genetic diversity in Swiss cattle breeds. Journanl of Animal Breeding and Genetics. vol. 116, no. 1, p. 1-8. http://dx.doi.org/10.1111/j.1439-0388.1999.00165.x  

 

Slate, J., Coltman, D. W., Goodman, S. J., MacLean, I., Pemberton, J. M., Williams, J. L. 1998. Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries). Animal Genetics. vol. 29, no. 4, p. 307-315. http://dx.doi.org/10.1046/j.1365-2052.1998.00347.x  PMid:9745670

 

Slate, J., Visscher, P. M., MacGregor, S., Stevens, D., Tate, M. L., Pemberton, J. M. 2002. A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus). Genetics. vol. 162, no. 4, p.1863-1873. PMid:12524355

 

Talbot, J., Haigh, J., Plante, Y. 1996. A parentage evaluation test in North American Elk (Wapiti) using microsatellites of ovine and bovine origin. Animal Genetics. vol. 27, no. 2, p. 117-119. http://dx.doi.org/10.1111/j.1365-2052.1996.tb00480.x  PMid:8856904

 

Walling, C. A., Pemberton, J. M., Hadfield, J. D., Kruuk, L. E. B. 2010. Comparing parentage inference software: reanalysis of a red deer pedigree. Molecular Ecology. vol. 19, no. 9, p. 1914-1928. http://dx.doi.org/10.1111/j.1365-294X.2010.04604.x  PMid:20345675

 

Webley, L. S., Zenger, K. R., English, A. W., Cooper, D. W. 2004. Low levels of genetic variation within introduced Javan rusa deer (Cervus timorensis russa) in Australia. European Journal of Wildlife Research. vol. 50, no. 3, p. 137-140. http://dx.doi.org/10.1007/s10344-004-0048-x  

 

Wilson, G. A., Strobeck, C., Wu, L., Coffin, J. W. 1997. Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Molecular Ecology. vol. 6, no. 7, p. 697-699. http://dx.doi.org/10.1046/j.1365-294X.1997.00237.x  PMid:9226951

 

Xu, Y. Ch., Pan, Z. Ch., Xu, Z. R., Yang, S. H., Jin, Y., Bai, S. Y. 2001. Status of microsatelite as genetic markers in cervids. Journal of Forestry Research. vol. 12, no. 1, p. 55-58. http://dx.doi.org/10.1007/BF02856802  

 

Published
2014-04-16
How to Cite
Maršálková, L., Židek, R., Pokoradi, J., Golian, J., & Belej, Ľubomír. (2014). Genetic diversity and relatedness among seven red deer (Cervus elaphus) populations. Potravinarstvo Slovak Journal of Food Sciences, 8(1), 15-19. https://doi.org/10.5219/320

Most read articles by the same author(s)