Microbial contamination of spices used in production of meat products
Abstract
There was investigated microbial quality of spices used in production of meat products (black pepper, allspice, coriander, juniper, cumin, cinnamon, badian, mustard, bay leaf, paprika, rosemary, garlic, ginger, thyme, cardamom). The spices were analysed on the presence of total count of mesophilic, thermoresistant and coliforming microorganisms, Staphylococcus aureus, methicilin resistant S. aureus (MRSA), Escherichia coli, Salmonella spp., Bacillus cereus, Bacillus licheniformis and moulds. For the detection of fungal contamination was used agar with glucose, yeast extract and oxytetracyklin and dichloran-glycerol agar. The cultivation was performed at 25 ±1°C for 5 - 7 days. The microscopic method was used for species identification. The aflatoxin presence was confirmed by ELISA test in all of tested spices and was performed in ppb (pars per billion = μg/kg). TCM ranged from 200 to 5600000 cfu/g, TRM from 20 to 90000 cfu/g and coliforming bacteria from 30 to 3200 cfu/g. B. cereus was present in juniper, mustard, bay leaf, thyme and cardamom (32%), while B. licheniformis was confirmed in 58% of cases (allspice, pepper, ground juniper, badian, bay leaf, paprika, garlic, thyme and cardamom). S. aureus was detected in whole coriander, cinnamon, badian and mustard but only in law number (30, 40, 20 and 10 cfu/g respectively). No strains S. aureus was identified as MRSA. The presence of Salmonella spp. and E. coli was not confirmed. The fungal contamination was found in 14 spices and the their count varied from 0 to 1550 cfu/g. There were confirmed the presence of Aspergillus flavus (allspice whole and ground, black pepper whole and ground, whole coriander, ground cumin, ground bay leaf), Aspergillus niger (allspice whole and ground, black pepper ground, ground juniper, cumin ground, bay leaf ground, ground rosemary, ground thyme), Penicillium glaucum (allspice whole and ground, whole juniper, whole cinnamon), Penicillium claviforme (whole black pepper, whole coriander, cardamom ground), Alternaria alternata (cumin ground, rosemary ground, thyme ground), Mucor (whole and ground coriander and thyme) and Phoma (ground cumin). The aflatoxin presence was confirmed in 11 of samples (57.9%) and the value ranged from 0 to 4 ppb (ground allspice, whole and ground pepper, whole juniper, cumin, cinnamon, badian, bay leaf, paprika, rosemary, thyme).
References
Arora, D. S., Kaur, J. 1999. Antimicrobial activity of spices. Int. J. Antimicrob. Agents, vol. 12, no. 3, p. 257-262. http://dx.doi.org/10.1016/S0924-8579(99)00074-6 PMid:10461845
Atanda, O. O., Akpan, I., Oluwafemi, F. 2007. The potential of some spice essential oils in the control of A. parasiticus CFR 223 and aflatoxin production. Food Control, vol. 18, no. 5, p. 601-607. http://dx.doi.org/10.1016/j.foodcont.2006.02.007
Boşgelmez-Tinaz, G., Ulusoy, S., Aridogan, B. Coskun-Ari, F. 2006. Evaluation of different methods to detect oxacillin resistance in Staphylococcus aureus and their clinical laboratory utility. Eur. J. Clin. Microbiol. Infect Dis., vol. 25, no. 6, p. 410-412. http://dx.doi.org/10.1007/s10096-006-0153-8 PMid:16767493
Commission Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs, 15.11.2005.
Commission Regulation (EU) No. 165/2010 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins, 26.02.2010.
ČSN EN ISO 4833: 2003. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of micro-organisms - Colony count technice at 30 °C. ČNI Praha.
ČSN EN ISO 6579: 2003. Microbiology of food and animal feeding stuffs - Horizontal method for detection of Salmonella spp. ČNI Praha.
ČSN EN ISO 6888-1: 2004. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) - Part 1: Technique using Baird-Parker agar medium ČNI Praha, 2004.
ČSN ISO 21257-2: 2009. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of yeasts and moulds - Part 2: Colony count technique in products with water activity less than or equal to 0,95. ČNI Praha, 2009.
ČSN ISO 4832: 2010. Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of coliforms - Colony-count technique. ČNI Praha, 1. 9. 2010.
Decree No. 132/2004 on microbiological requirements for foodstuffs, process of control and evaluation. Ministry of Health, 2004.
Decree No. 133/2004 on the conditions of irradiation of food and raw materials, the highest radiation dose and the method of labeling radiation on the packaging. Ministry of Health, 2004.
Imandel, K., Adibnia H. 2000. Microbial contamination of spices (turmeric, black pepper, and sumac) in western part of Tehran. Iranian Journal of Public Health, vol. 29, no. 1-4, p. 37-44. [cit.2015-01-07] Available at: http://ijph.tums.ac.ir/index.php/IJPH/article/view/1397
Kneifel, W., Berger, E. 1994. Microbiological criteria of random samples of spices and herbs retailed on the Austrian market. Journal of Food Protection, vol. 10, p. 893-901(9).
Mandal, S., DebMandal, M., Saha, K., Pal, N. K. 2011. In vitro antibacterial activity of three indian spices against methicilin-resistant Staphylococcus aureus. Oman Journal Medicine, vol. 26, no. 5, p. 319-323. http://dx.doi.org/10.5001/omj.2011.80 PMid:22125725
Mandeel, Q. A. 2005. Fungal contamination of some imported spices. Mycopathologia, vol. 159, no. 2, p. 291-298. http://dx.doi.org/10.1007/s11046-004-5496-z PMid:15770456
Martineau, F., Picard, F. J., Roy, P. H., Ouellette, M., Bergeron, M. G. 1998. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. Journal of Clinical Microbiology, vol. 36, no. 3, p. 618-623. PMid:9508283
Omidbeygi, M., Barzegar, M., Hamidi, Z., Naghdibadi, H. 2007. Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control, vol. 18, no. 12, p. 1518-1523. http://dx.doi.org/10.1016/j.foodcont.2006.12.003
Platel, K., Srinivasan, K. 2004. Digestive stimulant action of spices: a myth or reality? Indian J Med Research, vol. 119, no. 5, p. 167-179. PMid:15218978
Ritter, A. C., Hoeltz, M., Noll, I. B. 2011. Toxigenic potential of Aspergillus flavus tested in different culture conditions. Food Science and Technology (Campinas), vol. 31, no. 3, p. 623-628. [cit.2015-01-07] Available at: http://www.scielo.br/pdf/cta/v31n3/a11v31n3.pdf
Sağdıç, O., Kuşçu, A., Özcan, M., Özçelik, S. 2003. Effects of Turkish spice extracts at various concentrations on the growth of Escherichia coli O157:H7. Food Microbiology, vol. 19, no. 5, p. 473-480. http://dx.doi.org/10.1006/fmic.2002.0494
Shamsuddeen, U. 2009. Microbiological quality of spice used in the production of kilishi a traditionally dried and grilled meat product. Bayero Journal of Pure and Applied Sciences, vol. 2, no. 2, p. 66-69. [cit.2015-01-07] Available at: http://www.sciary.com/journal-scientific-pureappliedsciences-article-347790
Schindler, A. F., Palmer, J. G., Eisenberg, W. V. 1967. Aflatoxin production by Aspergillus flavus as related to various temperatures. Applied Microbiology, vol. 15, no. 5, p. 1006-1009. PMid:16349720
Schwab, A. H., Harpestad, A. D., Swartzentruber, E., Lnier, J. M., Wentz, B. A., Duran, A. P., Barnard, R. J., Read, Jr., R. B. 1982. Microbial quality of some spices and herbs in retail markets. Appl. Environ. Microbiol., vol. 44, no. 3, p. 627-630. PMid:7138003
Srinivasan, K. 2005a. Role of spices beyond food flavoring: Nutraceuticals with multiple health effects. Food Reviews International, vol. 21, no. 12, p. 167-188. http://dx.doi.org/10.1081/FRI-200051872
Srinivasan, K. 2005b. Spices as influencers of body metabolism: an overview of three decades of research. Food Reviews International, vol. 38, no. 1, p. 77-86. http://dx.doi.org/10.1016/j.foodres.2004.09.001
Srinivasan, K. 2007. Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit. Rev. Food Sci. Nutrit., vol. 47, no. 8, p. 735-748. http://dx.doi.org/10.1080/10408390601062054 PMid:17987447
Srinivasan, K., Sambaiah, K., Chandrasekhara, N. 2004. Spices as beneficial hypocholesterolemic food adjuncts: a review. Food Reviews International, vol. 20, p. 187-220. http://dx.doi.org/10.1081/FRI-120037160
Šarić, Lj., Škrinjar, M. M. 2008. Share of aflatoxigenic moulds from genera Asspergillus and Penicillium in mycopopulations isolated from spices for meat processing industry. Proceedings for Natural Sciences, vol. 114, p. 115-122.
Škrinjar, M. M., Nemet, N. T. 2009. Antimicrobial effect of spices and herbs essential oils. Biblid, vol. 40, p. 195-209.
Tajkarimi, M. M., Ibrahim, S. A., Cliver, D. O. 2010. Antimicrobial herb and spice compounds in food. Food Control, vol. 21, p. 1199-1218. http://dx.doi.org/10.1016/j.foodcont.2010.02.003
Van Doren, J. M., Neil, K. P., Parish, M., Gieraltowski, L., Goud, L. H., Gombas, K. L. 2013. Foodborne illness outbreaks from microbial contaminants in spices, 1973-2010. Food Microbiology, vol. 36, no. 2, p. 456-464. http://dx.doi.org/10.1016/j.fm.2013.04.014 PMid:24010629
Vyletělová, M., Hanuš, O., Páčová, Z., Roubal, P., Kopunecz, P. 2001. Frequency of Bacillus bacteria in raw cow´s milk and its relation to other hygienic parameters. Czech Journal of Animal Science, vol. 46, no. 6, p. 260-267.
Vyletělová, M., Švec, P., Páčová, Z., Sedláček, I., Roubal, P. 2002. Occurrence of Bacillus cereus and Bacillus licheniformis strains in the course of UHT milk production. Czech Journal of Animal Science, 47, p. 200-205.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).




















