Effects of cross-linking modification with phosphoryl chloride (POCl3) on pysiochemical properties of barley starch
Abstract
Chemical methods are one of the comon method in starch modification. This study aimed at investigating of cross-link affection of phosphoryl chloride with two different levels 0.5 and 1g.kg-1 in order to enhance funciotnal proeprties and physiochemical changes on extracted starch from barley variety Bahman which cultivates in Chahr-Mahal Bakhtiari Province of Iran. Obtained results indicated that cross-linking leads to reduce sweeling power of strach granuls compred to natural starch and the amount of reduciton increase via the substitituin level. Powerfull cross-linkingnetween starch chains casue more resistance of granules to seweeling which is increased by means of cross-linking dgree. Additioally, investigationresults from synersis revealed that releasing water percentage in cross-linked starches increase in comparison to natural starches and this amount depends onthe amount of cross-link surface with a significantly difference in (α <0.05). Gelatinization temperature in both levels negligibly increased by modification where in low level of cross-linking was more. Furthermoe evaluating gelation temperatures of both natural and cross-linked modified starches showed that addition of phosphate groups in starch and creating extra coovalent bonds make granues more compressed reulting in slight increase of To, Tp, Tcin barley starch. Icreasing of temperature observed more in less concentration of cross-links. Evaluation of viscosity changes also revealed that this modification depending on increasing the amount of Phosphoryl Chloride led to increasing peak temperature, diminish peak and setback viscosity. Result also exhibited that in morphological level, cross-link causes to incidence changes in particles' diameter size. The comparison of diameter average and frequency between natural starch and cross-links starch exhibited that in cross-linkd treatment with 0.5% phosphoryl chloride, increase in frequency of granules with diameter of 6 - 10µm and >20 µm obersced. While frequency of granules with diamater size of 2 - 6 µm and 10 - 20 µm has been reduced to 0 which create bigger granules.
References
Abbas, K. A., Khalil, S. K., Hussin, A. S. M. 2010. Modified Starches and Their Usages in Selected Food Products. Journal of Agricultural Science, vol. 2, no. 2, p. 90-100. http://dx.doi.org/10.5539/jas.v2n2p90
Ackar, D., Babic, J., Subaric, D., Kopjar, M., Milicevic, B. 2010. Isolation of starch from two wheat varieties and their modification with epichlorohydrin. Carbohydrate Polymer, vol. 81, no. 1, p. 76-82. http://dx.doi.org/10.1016/j.carbpol.2010.01.058
Alvani, K., Qi, X. Tester, R, F. Snape, C, E. 2011. Physico-chemical properties of potato starches. Food Chemistry, vol. 125, no 3, p. 958-965. http://dx.doi.org/10.1016/j.foodchem.2010.09.088
Bello-Perez, L. A., Agama-Acevedo, E., Zamudio-Flores, P. B., Mendez-Montealvo, G., Rodriguez-Ambriz, S. L. 2010. Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch. Lwt-Food Science Technology, vol. 43, no. 9, p. 1434-1440. http://dx.doi.org/10.1016/j.lwt.2010.04.003
Carmona-Garcia, R., Sanchez-Rivera, M. M., Mendez-Montealvo, G. 2009. Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiace). Carbohydrate Polymer, vol. 76, no. 1, p. 117-112. http://dx.doi.org/10.1016/j.carbpol.2008.09.029
Das, A. B., Singh, G., Singh, S., Riar, C. S. 2010. Effect of acetylation and dual modification on physico-chemical, rheological and morphological characteristics of sweet potato (Ipomoea batatas) starch. Carbohydrate Polymer, vol. 80, p. 725-732. http://dx.doi.org/10.1016/j.carbpol.2009.12.018
Dubois, I., Picton, L., Muller, G., Audibert- Hayet, A., Doublier, J. L. 2001. Structure/Rheological Properties Relations of Cross-linked Potato Starch Suspensions. Journal of Applied Polymer Science, vol. 81, no. 10, p. 2480-2489. http://dx.doi.org/10.1002/app.1690
Gujral, H. S., Sharma, P., Kaur, H., Singh, J. 2013. Physiochemical, pasting and thermal properties of starch isolated from different barley cultivars. International Journal of Food propretés, vol. 16, no. 7, 1494-1506. http://dx.doi.org/10.1080/10942912.2011.595863
Hung, P.V., Morita, N.2005. Effects of Granule Sizes on Physicochemical Properties of Cross-linked and Acetylated Wheat Starches. Starch/Stärk., vol. 57, no. 9, p. 413-420. http://dx.doi.org/10.1002/star.200500417
Jyothi, A. N., Moorthy, S. N., Rajasekharan, K. N. 2006. Effect of Cross-linking with epichlorohydrin on the Properties of Cassava (Manihot esculenta Crantz) Starch. Starch/Stärke, vol. 58, no. 6, p. 292-299. http://dx.doi.org/10.1002/star.200500468
Kaur, L., Singh, J., Singh, N. 2006. Effect of cross-linking on some properties of potato (Solanum tuberosum L.) starches. Journal of the Science of Food and Agriculture, vol. 86, no. 12, p. 1945-1954. http://dx.doi.org/10.1002/jsfa.2568
Kaur, B., Ariffin, F., Bhat, R., Karim, A. A. 2012. Progress in starch modification in the last decade. Food Hydrocolloids, vol. 26, no. 2, p. 398-404. http://dx.doi.org/10.1016/j.foodhyd.2011.02.016
Kim, B. Y., Yoo, B. 2010. Effects of cross-linking on the rheological and thermal properties of sweet potato starch. Starch/ Starke, vol. 62, no. 11, p. 577-583. http://dx.doi.org/10.1002/star.201000035
Koo, S. H., Lee, K. Y., Lee, H. G. 2010. Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food Hydrocolloids, vol. 24, no. 6-7, p. 619-625. http://dx.doi.org/10.1016/j.foodhyd.2010.02.009
Leach, H. W., Mccowen, L. D., Schoch, T. J. 1959. Structure of the starch granule: swelling and solubility patterns of various starches. Cereal Science, vol. 36, p. 534-544.
Lim, W. J., Liang, Y. T., Seib, P. A., Rao, C. S. 1992. Isolation of oat Starch from oat Flour. Cereal Chemistry, vol. 69, no. 3, p. 233-236.
M. Light, J. 1989. Modified Food Starches: Why, What, Where and How. In: Symposium on Modified Food Starches at AACC's74th Annual Meeting in Washington, DC, October 29-November 2.
Majzoobi, M., Sabery, B., Farahnaky, A., Karrila, T. T. 2012. Physicochemical properties of cross-linked-annealed wheat starch. Iran Polymer Journal, vol. 21, no. 8, p. 513-522. http://dx.doi.org/10.1007/s13726-012-0056-8
Miyazaki, M., Hung, P. V., Maeda, T., Morte, N. 2006. Recent advances in application of modified starches for breadmaking. Trends in Food Science and Technology, vol. 17, no. 11, p. 591-599. http://dx.doi.org/10.1016/j.tifs.2006.05.002
Myllärinen, P., Schulman, A. H., Salovaara, H. Poutanen, K. 1998. The Effect of Growth temperature on gelatinization properties of Barley Starch. Acta agric. Scandinavica, Sect. B - Soil and Plant Science, vol. 48, no. 2, p. 85-90. http://dx.doi.org/10.1080/09064719809362484
Polnaya, F. J., Haryadimarseno, D. W, Cahyanto, M. N. 2013. Effects of phosphorylation and cross-linking on the pasting properties and molecular structure of sago starch. International Food Research Journal, vol. 20, no. 4, p. 1609-1615. http://dx.doi.org/10.1016/j.foodchem.2009.02.006
Raina, C. S., Singh, S., Bawa, A. S., Saxena, D. C. 2007. A comparative study of Indian rice starches using different modification model solutions. Food Science and Technology, vol. 40, no. 5, p. 885-892. http://dx.doi.org/10.1016/j.lwt.2006.03.025
Singh, S. N., Singh, N. 2005. Characteristics of acetylated starches prepared using starches separated from different rice cultivars. Journal of Food Engineering, vol. 70, p. 117-127. http://dx.doi.org/10.1016/j.jfoodeng.2004.09.018
Singh, J., McCarthy, O J. Singh, H. 2006. Physico-chemical and morphological characteristics of New Zealand Taewa (Maori potato) starches. Carbohydrate Polymers, vol. 64, no. 4, p. 569-581. http://dx.doi.org/10.1016/j.carbpol.2005.11.013
Singh, J., Kaur, L., Mccarthy, O. J. 2007. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications. A review. Food Hydrocolloids, vol. 21, p. 1-22. http://dx.doi.org/10.1016/j.foodhyd.2006.02.006
Sullivan, P., Arendt, E., Gallagher, E. 2013. The increasing use of barley and barley by-products in the production of healthier baked goods. Trends in Food Science and Technology, vol. 29, no. 2, p. 124-134. http://dx.doi.org/10.1016/j.tifs.2012.10.005
Xiao, H., Lin, Q., Liu, G, Q. 2012. Effect of Cross-Linking and Enzymatic hydrolysis composite Modification on the Properties of Rice Starches. Molecules, vol. 17, no. 7, p. 8136-8146. http://dx.doi.org/10.3390/molecules17078136
Yosif, E. I., Gadallah, M. G. E., Sorour, A. M., 2011. Physico-chemical and rheological properties of modified corn starches and its effect on noodle quality. Annals of Agriculture Science, vol. 57, no. 1, p. 19-27. http://dx.doi.org/10.1016/j.aoas.2012.03.008
Zhao, J., Schols, H. A., Chen, Z., Jin, Z., Buwalda, P., Gruppen, H. 2012. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch. Food Chemistry, vol. 133, no. 4, p. 1333-1340. http://dx.doi.org/10.1016/j.foodchem.2012.02.021
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).




















