Bioinformatic approach in the identification of arabidopsis gene homologous in amaranthus

  • Jana Žiarovská Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Department of Genetics and Plant Breeding, Tr. A. Hlinku 2, 949 76 Nitra
  • Michal Záhorský Slovak Academy of Sciences, Institute of Plant Genetics and Biotechnology, Akademická 2, 949 01 Nitra
  • Zdenka Gálová Slovak University of Agriculture in Nitra, Faculty of Biotechnology and Food Sciences, Department of Biochemistry and Biotechnology, Tr. A. Hlinku 2, 949 76 Nitra
  • Andrea Hricová Slovak Academy of Sciences, Institute of Plant Genetics and Biotechnology, Akademická 2, 949 01 Nitra
Keywords: BLAST analysis, alightment, Rml-C like cupins, Amaranthus, PCR identification

Abstract

Bioinfomatics offers an efficient tool for molecular genetics applications and sequence homology search algorithms became an inevitable part for many different research strategies. Appropriate managing of known data that are stored in public available databases can be used in many ways in the research. Here, we report the identification of RmlC-like cupins superfamily protein DNA sequence than is known in Arabidopsis genome for the Amaranthus - plant specie where this sequence was still not sequenced. A BLAST based approach was used to identify the homologous sequences in the nucleotide database and to find suitable parts of the Arabidopsis sequence were primers can be designed. In total, 64 hits were found in nucleotide database for Arabidopsis RmlC-like cupins sequence. A query cover ranged from 10% up to the 100% among RmlC-like cupins nucleotides and its homologues that are actually stored in public nucleotide databases. The most conserved region was identified for matches that posses nucleotides in the range of 1506 up to the 1925 bp of RmlC-like cupins DNA sequence stored in the database. The in silico approach was subsequently used in PCR analysis where the specifity of designed primers was approved. A unique, 250 bp long fragment was obtained for Amaranthus cruentus and a hybride Amaranthus hypochondriacus x hybridus in our analysis. Bioinformatic based analysis of unknown parts of the plant genomes as showed in this study is a very good additional tool in PCR based analysis of plant variability. This approach is suitable in the case for plants, where concrete genomic data are still missing for the appropriate genes, as was demonstrated for Amaranthus

References

Brown, D. R., Southern, L. L. 1985. Effect of citric acid and ascorbic acids on performance and intestinal pH of chicks. Poultry Science, vol. 64, no. 7, p. 1390-1401. http://dx.doi.org/10.3382/ps.0641399  PMid:4022914

 

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, vol. 25, no. 17, p. 3389-3402. http://dx.doi.org/10.1093/nar/25.17.3389  PMid:9254694

 

Aravind, L., Koonin, E. V. 1999. Gleanin non-trivial structural, functional and evolutionary information about proteins by interactive database searches. J. Mol. Biology, vol. 287, no. 5, p. 1023-1040. http://dx.doi.org/10.1006/jmbi.1999.2653  PMid:10222208

 

Bailey, T. L. 2008. Discovering sequence motifs. Methods Mol. Biology. vol. 452, p. 231-251. http://dx.doi.org/10.1007/978-1-60327-159-2_12  PMid:18566768

 

Bäumlein, H., Braun, H., Kakhovskaya, I. A., Shutov. A. D. 1995. Seed storage proteins of spermatophytes share a common ancestor with desiccation proteins of fungi. Journal of Molecular Evolution, vol. 41, no. 6, p. 1070-1075. http://dx.doi.org/10.1007/BF00173188  PMid:8587105

 

Dasu, S., Williams, A., Fofanov, Y., Putonti, C. 2010. csPCR: A computational tool for the simulation of the Polymerase Chain Reaction. Online Journal of Bioinformatics, vol. 11, no. 1, p. 34-37. [cit. 2015-03-03] Available at: http://onljvetres.com/cspcrabs2010.htm

 

Dunwell, J. M. 1998. Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnol. Genet. Eng. Rev., vol. 15, no. 1, p.1-32. http://dx.doi.org/10.1080/02648725.1998.10647950  PMid:9573603

 

Hertz, G. Z., Stormo, G. D. 1999. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics, vol. 15, no. 7-8, p. 563-577. http://dx.doi.org/10.1093/bioinformatics/15.7.563  PMid:10487864

 

Kalendar, R., Lee, D., Schulman, A. H. 2011. Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics, vol. 98, no. 2, p. 137-144. http://dx.doi.org/10.1016/j.ygeno.2011.04.009  PMid:21569836

 

Karpov, P. A., Nadezhdina, E. S., Yemets, A. I., Matusov, V. G., Nyporko, A. Y., Shashina, N. Y., Blume, Y. B. 2010. Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases. BMC Genomics, vol. 11, Suppl. 1, S14; http://dx.doi.org/10.1186/1471-2164-11-S1-S14

 

Khuri, S., Bakker, F. T., Dunwell, J. M. 2001. Phylogeny, Function, and Evolution of the Cupins, a Structurally Conserved, Functionally Diverse Superfamily of Proteins. Molecular Biology and Evolution, vol. 18, no. 4, p. 593-605. http://dx.doi.org/10.1093/oxfordjournals.molbev.a003840  PMid:11264412

 

La, D., Livesay, D. R. 2005. Predicting functional sites with an automated algorithm suitable for heterogeneous datasets. BMC Bioinformatics, vol. 6, p. 116. http://dx.doi.org/10.1186/1471-2105-6-116  PMid:15890082

 

Lin, I. 2012. Discovering Transcription Factor Binding Motif Sequences. Bioc218 Final Report. [cit. 2015-03-03] Available at: http://biochem218.stanford.edu/Projects%202012/Lin.pdf

 

Rasouli, H., Kahrizi, D., Ghadernia, P. 2013. Identification of conserved domains and motifs for TaWdhn13 gene in Triticum aestivum by in silico analysis. Advances in Environmental Biology, vol. 7, p. 586-590.

 

Shea, N., Gardner, S. H., Slezak, T. 2014. Simulate_PCR for amplicon prediction and annotation from multiplex, degenerate primers and probes. BMC Bioinformatics, vol. 15, p. 237. http://dx.doi.org/10.1186/1471-2105-15-237  PMid:25005023

 

Woo, E.-J., Dunwell, J. M, Goodenough, P. W.,  Marvier, A. C., Pickersgill, R. W. 2000. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat. Struct. Biol. vol. 7, no. 11, p. 1036-1040. http://dx.doi.org/10.1038/80954  PMid:11062559

 

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., Madden, T. L. 2012. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, vol. 13, p. 134. http://dx.doi.org/10.1186/1471-2105-13-134  PMid:22708584

 

Zhang, Z., Schwartz, S., Wagner, L., Miller, W. A. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, vol. 7, no. 1-2, p. 203-214. http://dx.doi.org/10.1089/10665270050081478  PMid:10890397

 

Published
2015-05-15
How to Cite
Žiarovská, J., Záhorský, M., Gálová, Z., & Hricová, A. (2015). Bioinformatic approach in the identification of arabidopsis gene homologous in amaranthus. Potravinarstvo Slovak Journal of Food Sciences, 9(1), 149-153. https://doi.org/10.5219/467

Most read articles by the same author(s)