Effect of milk origin on proteolysis and accumulation of biogenic amine during ripening of Dutch-type cheese
Abstract
Dairy products from goat's milk are characterized by their distinctive aroma and their specific taste. However, the strong aroma can discourage some consumers. Properties of cheese can be modified by the combination of goat's and cow's milk. On the other hand, chemical diversity from different milk origin may affect the changes during ripening. The aim of the study was to compare the intensity of changes during ripening of model cheese samples produced with various ratios of goat's and cow's milk. The combinations 100:0 (100% goat's milk), 75:25, 50:50, 25:75 and 0:100 (100% cow's milk) were used for the manufacture of Dutch-type cheeses, which were ripened during a period of 84 days. Protein profile, free amino acid content and biogenic amine content were used for the description of cheese properties during storage. Cluster analysis showed different changes in the protein matrix of the examined samples. The results indicated that even low addition of cow's milk significantly affected the protein profile. However, the homology of protein profiles rose with the increasing ripening time. More intensive proteolysis occured in the samples with predominance of goat's milk. Moreover, cheese samples produced only from goat's milk presented a significant increase inthe amount of free amino acids after 14 days of ripening. The effect of milk origin on the production of biogenic amines was also examined. However, higher concentrations of biogenic amines were detected in samples manufactured from goat's milk. Tyramine, putrescine, histamine and phenylethylamine were detected during the storage of the samples. The total biogenic amine content exceeded 100 mg/kg in samples with predominance of goat's milk.
References
Albenzio, M., Santillo, A. 2011. Biochemical characteristics of ewe and goat milk: Effect on the quality of dairy products. Small Ruminant Research, vol. 101, no. 1-3, p. 33-40. http://dx.doi.org/10.1016/j.smallrumres.2011.09.023
Bezerra, T. K. A., Arcanjo, Araújo, A. R. R., Queiroz, A. L. M., Oliveira, M., E., G., Gomes, A., M., P., Madruga, M. S. 2017. Volatile profile in goat coalho cheese supplemented with probiotic lactic acid bacteria. LWT - Food Science and Technology, vol. 76, no. Part B, p. 209-215. http://dx.doi.org/10.1016/j.lwt.2016.03.041
Buňková, L., Adamcová, G., Hudcová, K., Velichová, H., Pachlová, V., Lorencová, E., Buňka, F. 2013. Monitoring of biogenic amines in cheeses manufactured at small-scale farms and in fermented dairy products in the Czech Republic. Food Chemistry, vol. 141, no. 1, p. 548-551. http://dx.doi.org/10.1016/j.foodchem.2013.03.036
Buňková, L., Buňka, F., Hlobilová, M., Vaňátková, Z., Nováková, D., Dráb, V. 2009. Tyramine production of technological important strains of Lactobacillus, Lactococcus and Streptococcus. European Food Research and Technology, vol. 229, p. 533-538. http://dx.doi.org/10.1007/s00217-009-1075-3
Combarros-Fuertes, P., Fernández, D., Arenas, R., Diezhandino, I., Tornadijo, M. E., Fresno, J. M. 2016. Biogenic amines in Zamorano cheese: factors involved in their accumulation. Journal of the Science of Food and Agriculture, vol. 96, no. 1, p. 295-305. http://dx.doi.org/10.1002/jsfa.7093
Dadáková, E., Křížek, P., Pelikánová, T. 2009. Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC). Food Chemistry, vol. 116, no. 1, p. 365-370. http://dx.doi.org/10.1016/j.foodchem.2009.02.018
Fontenele, M. A., Bastos, M. S. R.,Dos Santos, K. M. O., Bemquerer, M. P., Do Egito, A. S. 2017. Peptide profile of Coalho cheese: A contribution for Protected Designation of Origin (PDO). Food Chemistry, vol. 219, 382-390. http://dx.doi.org/10.1016/j.foodchem.2016.09.171
Hickey, D. K., Guinee, T. P., Hou, J., Wilkinson, M. G. 2013. Effects of variation in cheese composition and maturation on water activity in Cheddar cheese during ripening. International Dairy Journal, vol. 30, no. 1, p. 53-58. http://dx.doi.org/10.1016/j.idairyj.2012.11.006
Indra, Z., Mizera, J. 1992. Chemical control methods formilk processing (Chemické kontrolní metody pro obor zpracovaní mléka). Praha, 273 p.
ISO 2004. Cheese and Processed Cheese - Determination of the Total Solids Content (Reference Method). Standard No. 5534: International Organization for Standardization, Geneva.
Kalač, P. 2014. Health effects and occurrence of dietary polyamines: A review for the period 2005-mid 2013. Food Chemistry, vol. 161, p. 27-39. http://dx.doi.org/10.1016/j.foodchem.2014.03.102
Kološta, M., Slottová, A., Drončovský, M., Klapáčová, L., Kmeť, V., Bujňáková, D., Lauková, A., Greif, G., Greifová, M., Tomáška, M. 2014. Characterisation of Lactobacilli from eweʼs and goatʼs milk for their further processing re-utilisation. Potravinarstvo, vol. 8, no. 1, p. 130-134. http://dx.doi.org/10.5219/354
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, vol. 227, p. 680-685. http://dx.doi.org/10.1038/227680a0
Lazárková, Z., Buňka, F., Buňková, L., Holáň, F., Kráčmar, S., Hrabě, J. 2011. The effect of different heat sterilization regimes on the quality of canned processed cheese. Journal of Food Process Engineering, vol. 34, no. 6, p. 1860-1878. http://dx.doi.org/10.1111/j.1745-4530.2009.00376.x
Quigley, L., O'sullivan, O., Stanton, C., Beresford, T. P., Ross, R. P., Fitzgerald, G. F., Cotter, P. D. 2013. The complex microbiota of raw milk. FEMS Microbiology Reviews, vol. 37, no. 5, p. 664-698. http://dx.doi.org/10.1111/1574-6976.12030
Pachlová, V., Buňka, F., Buňková, L., Weiserová, E., Budinský, P., Žaludek, M., Kráčmar, S. 2011. The effect of three different ripening/storage conditions on the distribution of selected parameters in individual parts of Dutch-type cheese. International Journal of Food Science & Technology, vol. 46, no. 1, p. 101-108. http://dx.doi.org/10.1111/j.1365-2621.2010.02460.x
Silla Santos, M. H. 1996. Biogenic amines: their importance in food. International Journal of Food Microbiology, vol. 29, no. 2-3, p. 213-231. http://dx.doi.org/10.1016/0168-1605(95)00032-1
Sousa, M. J., Ardö, Y., Mcsweeney, P. L. H. 2001. Advances in the study of proteolysis during cheese ripening. International Dairy Journal, vol. 11, no. 4-7, p. 327-345. http://dx.doi.org/10.1016/S0958-6946(01)00062-0
Spano, G., Russol, P., Lonvaud-Funel, A., Lucas, P., Alexandre, H., Grandvalet, C., Coton, E., Coton M., Barnavon, L., Bach, B., Rattray, F., Bunte, A., Magni, C., Ladero, V., Alvarez, M., Fernandéz, M., Lopez, P., De Palencia, P. F., Corbi, A., Trip, H., Lolkema, J. S. 2010. Biogenic amines in fermented foods. European Journal of Clinical Nutrition, vol. 64, p. 95-100. http://dx.doi.org/10.1038/ejcn.2010.218
Ten Brink, B., Damink, C., Joosten, H. M. L. J., Huist In´T Veld, J. H. 1990. Occurrence and formation of biological active amines in foods. International Journal of Food Microbiology, vol. 11, no. 1, p. 73-84. http://dx.doi.org/10.1016/0168-1605(90)90040-C
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).




















