Production of enterotoxins of Staphylococcus spp. isolated from samples of sheep milk
Abstract
In our study was followed occurrence of mastitis in herd of 430 sheep of breed zoslachtena valaska with hand milking technology examined two times during one lactation season. Individual examination consisted from clinical examination of udder and microbiological examination of milk samples. By PCR was determined presence of genes coding production of enterotoxins, and by ELISA methods production individual types of enterotoxins. From individual forms of mastitis were frequently detected subacute (6.7%), subclinical (5.7%) and acute (2.9%). The coagulase-negative staphylococci (CNS) were identified in 102 (65.4%) from all 156 positive isolates. The CNS and S. aureus caused subacute (5.1%), subclinical (3.9%) and acute (2.4%) forms of mastitis. The most frequently isolated were S. epidermidis, followed by S. chromogenes and S. xylosus from ewes with subacute and subclinical mastitis. From acute and chronical forms of mastitis were predominantly isolated S. aureus, S. uberis and S. epidermidis. The production of staphylococcal enterotoxins (SE) - SEA, SEB, SEC, SED and the presence of genes sec (3), sea (2), seb (2) and sed (2) were determined in S. aureus, S. epidermidis, S. schleiferi and S. chromogenes, respectively. The results suggested on the high occurrence (12.4%) of subacute and subclinical forms. Confirmed production of enterotoxins and presence of genes coding their production present a risk for human health and decreased a quality of milk and products from sheep´s milk.References
Beatriz, M., Borelli, E. G., Ferreira, I. C., Lacerda, D. A., Santos, L. S., Carmo, R. S., Dias, M., Crisolita, C., Silva, C. A. 2006. Enteroxigenic Staphylococcus spp. and other microbial contaminants during production of Canastra cheese, Brazil. Braz. J. Microbiol., vol. 37, no. 4, p. 545-550. http://dx.doi.org/10.1590/S1517-83822006000400026
Becker, K., Roth, R., Peters, G. 1998. Rapid and specific detection of toxigenic Staphylococcus aureus: use of two multiplex PCR enzyme immunoassays for ammplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic syndrome toxin-1 gene. J. Clin. Microbiol., vol. 36, p. 2548-2553. PMid:9705390
Becker, K., Keller, B., Von, E.C., Brǖck, M., Lubritz, G., Etienne, J., Peters, G. 2001. Enterotoxigenic potential of Staphylococcus intermedius. Appl. Environ. Microbiol., vol. 67, p. 5551-5557. http://dx.doi.org/10.1128/AEM.67.12.5551-5557.2001 PMid:11722906
Bergonier, D., Crémoux, R., Rupp, R., Lagriffoul, G. Erthelot, X. 2003. Mastitis of dairy small ruminants. Vet. Res., vol. 34, p. 689-716. http://dx.doi.org/10.1051/vetres:2003030
Berthelot, X., Lagriffoul, G., Concordet, D., Barillet, F., Bergonier, D. 2006. Physiological and pathological thresholds of somatic cell counts in ewe milk. Small Ruminant Research, vol. 62, p. 27-31. http://dx.doi.org/10.1016/j.smallrumres.2005.07.047
Burriel, A. R. 1997. Dynamics of intramammary infection in the sheep caused by Coagulase-negative staphylococci and its influence on the udder tissue and the milk composition. Veterinary Record. vol. 140, p. 419-423. http://dx.doi.org/10.1136/vr.140.16.419 PMid:9149361
Conington, J., Cao, G., Stott, A., Bůnger, L. 2008. Breeding for resistance to mastitis in United Kingdom sheep, a review and economic appraisal. Veterinary Record, vol.162,
p. 369-376. http://dx.doi.org/10.1136/vr.162.12.369 PMid:18359930
Contreras, D., Sierra, A., Sanchez, J. C., Corrales, J. C., Marco, M. J., Paape, C., Gonzalo, A. 2007. Mastitis in small ruminants. Small Ruminant Research, Special Issue: Goat and Sheep Milk, vol. 68, no 1-2, p. 145-153. http://dx.doi.org/10.1016/j.smallrumres.2006.09.011
Fthenakis, G. C. 1994. Prevalence and aetiology of subclinical mastitis in ewes of southern Greece. Small Rumin. Res., vol. 13, p. 293-300, http://dx.doi.org/10.1016/0921-4488(94)90078-7
Fthenakis, G. C. 1995. California mastitis test and Whiteside test in diagnosis of subclinical mastitis of dairy ewes. Small Ruminant Res., vol. 16, p. 271-276. http://dx.doi.org/10.1016/0921-4488(95)00638-2
Hariharan, H., Donachie, W., Macaldowie, C., Keefe, G. 2004. Bacteriology and somatic cell counts in milk samples from ewes on a Scottish farm. Can. J. Vet. Res., July, vol. 68, no.3, p. 188-192. PMid:15352543
Matsunaga, T., Kamata, S., Kakiichi, N., Uchida, A. 1993. Characteristics of Staphylococcus aureus isolated from peracute, acute and chronic bovine mastitis. J. Vet. Med. Sci. vol. 55, p. 297-300. PMid:8513013
Omoe, K., Ishikawa, M., Shimoda, Y., Hu, D. L., Ueda, S., Shinagawa, K. 2002. Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates harbouring seg, seh, or sei genes. J. Clin. Microbiol. vol. 40, no. 3, p. 857-862. PMid:11880405
Ozenc, E., Seker, E., Baki Acar, D., Birdane, M. K., Darbaz, I., Dogan, N. 2011. The Importance of Staphylococci and threshold value of somatic cell count for diagnosis of sub-clinical mastitis in pirlak sheep at mid-lactation. Reprod. Dom. Anim. vol. 46, p. 970-974, http://dx.doi.org/10.1111/j.1439-0531.2011.01768.x PMid:21366722
Scherrer, D., Corti, S., Muehlherr, J. E., Zweifel, C., Stephan, R. 2004. Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from raw bulk-tank milk samples of goats and sheep. Vet. Microbiol. vol. 101, no. 2, p. 101-107. http://dx.doi.org/10.1016/j.vetmic.2004.03.016 PMid:15172692
Valle, J., Gomez, L. E., Piriz, S., Goyache, J., Orden, J. A., Vadilo, S. 1990. Enterotoxins production by Staphylococcal isolated from healthy goats. Applied and Environmental Microbiology, vol. 56, no. 5, p. 1323-1326. PMid:2339886
Vautor, E., Cocckfield, J., Marechal Le, C., Le Loir, Y., Chevalier, M., Robinson, A. D., Thiery, R., Lindsay, J. 2009. Difference in virulence between Staphylococcus aureus isolates causing gangrenous mastitis versus subclinical mastitis in a dairy sheep flock. Vet. Res. vol. 6, p. 40-56. http://dx.doi.org/10.1051/vetres/2009039 PMid:19576164
Zschöck, M., Botzler, D., Blöcher, S., Sommerhauser, J., Hamann, H. P. 2000. Detection of genes for enterotoxins (ent) and toxic shock syndrome toxin-1 (tst) in mammary isolates of Staphylococcus aureus by polymerase-chain-reaction.
Int. Dairy J., vol. 10, p. 569-574. http://dx.doi.org/10.1016/S0958-6946(00)00084-4
Zschöck, M., Kloppert, W., Wolter, H., Hamann, P., Lämmler, CH. 2005. Pattern of enterotoxin genes seg, seh, sei and sej positive Staphylococcus aureus isolated from bovine mastitis, Veterinary Microbiology, vol. 108, no. 3-4,
p. 243-249, http://dx.doi.org/10.1016/j.vetmic.2005.02.012 PMid:15916869
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





















