Determination of the carrot (Daucus carota L.) yields parameters by vermicompost and earthworms (Eisenia foetida)

  • Peter Kováčik Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Department of Agrochemistry and Plant Nutrition, Tr. A Hlinku 2, 949 76 Nitra
  • Peter Šalamún Slovak Academy of Sciences, Institute of Parasitology, Department of Environmental and Plant Parasitology, Hlinkova 3 / Puškinova 6, 040 01 Košice
  • Sylwester Smoleń University of Agriculture in Kraków, Faculty of Biotechnology and Horticulture, Institute of Plant Biology and Biotechnology, Unit of Plant Nutrition, al. 29 Listopada 54, 31–425, Krakow
  • Petr Škarpa Mendel University in Brno, Faculty of Agri science, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Zemědelská 1, 613 00 Brno
  • Vladimír Šimanský Slovak University of Agriculture in Nitra, Faculty of Agrobiology and Food Resources, Tr. A Hlinku 2, 949 76 Nitra, Slovakia, E-mail: Department of pedology and geology, Tr. A. Hlinku 2, 949 76 Nitra
  • Ľuboš Moravčík Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Department of Garden and Landscape Architecture, Tulipánová 7, 949 76 Nitra
Keywords: carrot, antioxidant, vitamin C, total polyphenol, yield

Abstract

The impact of different types of vermicomposts as well as different species and genera of earthworms on the quantity of the cultivated crops yield has been studied for decades. There is scarce information about the effects of these factors on the quality of plant production. One of the qualitative parameters of vegetables, to which a special attention is paid, is the content of antioxidants (vitamin C, total polyphenols and other substances). The pot experiment carried out in the vegetation cage studied: A) the influence of soil itself, soil mixed with vermicompost in a ratio of 4:1; B) the influence of earthworms number (genus Eisenia foetida, 10 and 20 individuals per pot) supplied to soil mixed with vermicompost in a ratio of 4:1 on the weight of radish roots and leaves, to the total chlorophylls content in leaves, to the selected qualitative parameters of the roots and leaves (vitamin C, total polyphenols content,  total antioxidant activity). The results showed that the supplementation of vermicompost into soil increased the content of the total chlorophylls in leaves. The carrot roots and leaves yield has also been risen. In the roots the content of vitamin C and content of total polyphenols (TPC) was decreased and the total antioxidant activity (TAA) dropped, too. The increased content of vitamin C and TPC was detected in leaves. The inoculation of soil containing vermicompost by earthworms increased the root yield and TAA in roots. It increased the content of vitamin C and TPC in leaves. From the viewpoint of antioxidant content (vitamin C and total polyphenols) the leaves are more attractive than a root.

 

References

Amador, J.  A., Görres, J. H., Savin, M. C. 2006. Effects of Lumbricus terrestris L. on nitrogen dynamics beyond the burrow. Applied Soil Ekology, vol. 33, p. 61-66. https://doi.org/10.1016/j.apsoil.2005.09.008

 

Amossé, J., Bettarel, Y., Bouvier, C., Duc, T. T., Thu, T. D., Jouquet, P. 2013. The flows of nitrogen, bacteria and viruses from the soil to water compartments are influenced by earthworm activity and organic fertilization (compost vs. vermicompost). Soil Biology & Biochemistry, vol. 66, p. 197-203. http://dx.doi.org/10.1016/j.soilbio.2013.07.007

 

Arancon, N. Q., Edwards, C. A., Atyieh, R., Metzger, J. D. 2004. Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresource Technology, vol. 93, p. 139-144. https://doi.org/10.1016/j.biortech.2003.10.015

 

Arnold, R. E., Hodson, M. E. 2007. Effect of time and mode of depuration on tissue copper concentrations of the earthworms Eisenia andrei, Lumbricus rubellus and Lumbricus terrestri. Environmental Pollution, vol.148, no. 1, p. 21-30. http://dx.doi.org/10.1016/j.envpol. 2006.11.003 

 

Bhat, S. A., Singh, S., Sing, J., Kumar, S. Bhawana, Vig, A. P. 2018. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. Bioresource Technology, vol. 252, p. 172-179. https://doi.org/10.1016/j.biortech.2018.01.003 

 

Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft and Technologie, vol. 28, no. 1, p. 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5  

 

Bremner, J. M. 1960. Determination of nitrogen in soil by the Kjeldahl method. Journal of Agricultural Science, vol. 55, no. 1, p. 11-33. https://doi.org/10.1017/S0021859600021572

 

Brown, G. G., Edwards, C. A., Brussaard, L.  2004. How Earthworms Affect Plant Growth: Burrowing into the Mechanisms. In Edwards, C.A. et al. Earthworm ecology. 2nd  Edition. Ch. 2, CRC Press : London, UK p. 13-45, ISBN: 9780849318191 

 

Dziadowiec, H., Gonet, S. S. 1999. A guide to the methods for determination of soil organic matter. Prace Komisie Naukowej. PTG : Warszawa, Poland, 65. p.

 

Doan, T. T., Ngo, P. T., Rumpel, C., Nguyen, B. V. 2013. Interactions between compost, vermicompost and earthworms influence plant growth and yield: A one-year greenhouse experiment. Scientia Horticulturae, vol. 160, p. 148-154. http://dx.doi.org/10.1016/j.scienta.2013.05.042

 

Elmer, W. H. 2016. Effect of leaf mold mulch, biochar, and earthworms on mycorrhozal colonization and yield of asparagus affected by Fusarium crown and root rot. Plant disease. vol. 100, p. 2507-2512. http://dx.doi.org/10.1094/PDIS-10-15-1196-RE

 

Garg, P., Gupta, A., Satya, S. 2006. Vermicomposting of different types of waste using Eisenia foetida : A comparative study. Bioresource Technology. vol. 97, p. 391-395. http://dx.doi.org/10.1016/j.biortech.2005.03.009

 

Goswami, L., Nath, A., Sutradhar, S., Bhattacharya, S. S., Kalamdhad, A., Vellingiri, K., Kim, K-H. 2017. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. Journal of Environmental Management, vol. 200, p. 243-252. http://dx.doi.org/10.1016/j.jenvman.2017.05.073

 

Friberg, H., Lagerlöf, J., Rämert, B. 2005. Influence of soil fauna on fungal plantpathogens in agricultural and horticultural systems. Biocontrol Science and Technology, vol. 15, no. 7, p. 641-658. http://dx.doi.org/10.1080/09583150500086979

 

Groenigen, J. W., Lubbers, I. M., Vos, H. M. J., Brown, G. G., De Deyn, G. B., Groenigen, K. J. 2014. Earthworms increase plant production: a meta-analysis. Scientific Reports, vol. 4, no. 6365, p. 1-7. https://doi.org/10.1038/srep06365

 

Gutiérrez-Miceli F. A., García-Gómez R. C., Rin­cón R. R., Abud-Archila M., Llaven O. M. A., Cruz M. J. G., Dendooven L. 2008. Formulation of a liquid fertilizer for sorghum (Sorghum bicolor L. Moench) using vermicompost leachate. Bioresource Technology, vol. 99, p. 6174-6180. http://dx.doi.org/10.1016/j.biortech.2007.12.043   

 

Gutiérrez-Miceli, F. A., Santiago-Borraz, J., Molina, J. A. M., Nafatae, C. C., Abud-Archila, M., Llaven, M. A. O., Rosales, R. R., Dendooven, L. 2007. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, vol. 98, no. 15, p. 2781-2786. http://dx.doi.org/10.1016/j.biortech.2006.02.032

 

Gunadi, B., Edwards, C. A. 2003. The effects of multiple applications of different organic wastes on the growth, fecundity and survival of Eisenia fetida (Savigny) (Lumbricidae). Pedobiologia, vol. 47, no. 4, 321-329. https://doi.org/10.1078/0031-4056-00196

 

Hegedűsová, A., Mezeyová, I., Timoracká, M., Šlosár, M., Musilová, J., Juríková, T. 2015. Total polyphenol content and antioxidant capacity changes in dependence on chosen garden pea varieties. Potravinarstvo, vol. 9, no. 1, p. 1-8. https://doi.org/10.5219/412 

 

Jouquet, P., Plumere, T., Thu, T. D., Rumpel, C., Duc, T. T., Orange, D. 2010. The rehabilitation of tropical soils using compost and vermicompost is affected by the presence of endogeic earth worms. Applied Soil Ecology, vol. 46, p. 125-133.  https://doi.org/10.1016/j.apsoil.2010.07.002

 

Manh, V. H., Wang, C. H. 2014. Vermicompost as an important component in substrate: Effects on seedling quality and growth of muskmelon (Cucumis melo L.). APCBEE Procedia, vol. 8, p. 32-40. https://doi.org/10.1016/j.apcbee.2014.01.076

 

Khan, K., Pankaj, U., Verma, S. K., Gupta, A. K., Singh, R. P., Verma, R. K. 2015. Bio-inoculants and vermicompost influence on yield, quality of Andrographis paniculata, and soil properties. Industrial Crops and Products, vol. 70, p. 404-409. https://doi.org/10.1016/j.indcrop.2015.03.066

 

Kováčik. P. 2007. Brief history of agrochemistry and fertilization in Slovakia (Stručná história agrochémie a úroveň hnojenia na Slovensku). Prešov : Vydavateľstvo Michala Vaška, Slovakia, 76 p. ISBN: 978-80-7165-608-1 (In Slovak)

 

Kováčik, P., Renčo, M., Šimanský, V., Hanáčková, E., Wiśniowska-Kielian, B. 2015 Impact of vermicompost extract application into soil and on plant leaves on maize phytomass formation. Journal of Ecological Engineering, vol. 16, no. 4, p. 143-153. https://doi.org/10.12911/22998993/59363

 

Kováčik, P., Šimanský, V., Wierzbowska, J., Renčo M. 2016. Impact of foliar application of biostimulator Mg-Titanit on formation of winter oilseed rape phytomass and its titanium content. Journal of Elementology, vol. 21, no. 4, p. 1235-1251. https://doi.org/10.5601/jelem.2016.21.2.1155 

 

Kováčik, P., Šalamún, P., Wierzbowska, J. 2018. Vermikompost and Eisenia foetida as factors influencing the formation of radish phytomass. Agriculture (Poľnohospodárstvo), vol. 64, no. 2, p. 49-56. https://doi.org/10.2478/agri-2018-0005

 

Lalander, C. H. Komakech, A. J., Vinnerĺs, B.  2015. Vermicomposting as manure management strategy for Urban small-holder animal farms - Kampala case study. Waste Management, vol. 39, p. 96-103. https://doi.org/10.1016/j.wasman.2015.02.009 

 

Lachman, J., Proněk, D., Hejtmanková, A., Dudjak, J., Pivec, V., Faitová, K. 2003. Total polyphenol and main flavonoid antioxidant in different onion (Allium cepa L.) varieties. Horticultural Science, vol. 30, no. 4, p. 142-147. https://doi.org/10.17221/3876-HORTSCI

 

Lenková, M., Bystrická, J., Chlebo, P., Kovarovič, J. 2018. Garlic (Allium Sativum L.) - The content of bioactive compounds. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 405-412. https://doi.org/10.5219/830  

 

Lichtenthaler, H. K. 1987. Chllorophylls and carotenoides: Pigments of photosynthetic biomembranes. Methods Enzymology, vol. 148, p. 350-382. https://doi.org/10.1016/0076-6879(87)48036-1

 

Musilová, J., Bystrická, J., Árvay, J., Harangózo, Ľ. 2017. Polyphenols and phenolic acids in sweet potato (Ipomoea Batatas L.) roots. Potravinarstvo Slovak Journal of Food Sciences, vol. 11, no. 1, p. 82-87.  https://doi.org/10.5219/705  

 

Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communication in Soil Science and Plant Analysis, vol. 15, no. 12, p. 1409-1416. https://doi.org/10.1080/00103628409367568

 

Milcu, A., Schumacher, J., Scheu, S. 2006. Earthworms (Lumbricus terrestris) affect plant seedling recruitment and microhabitat heterogenity. Functional Ekology, vol. 20, p. 261-268. https://doi.org/10.1111/j.1365-2435.2006.01098.x

 

Najjari, F., Ghasemi, S. 2018. Changes in chemical properties of sawdust and blood powder mixture during vermicomposting and the effects on the growth and chemical composition of cucumber. Scientia Horticulturae, vol. 232, p. 250-255. https://doi.org/10.1016/j.scienta.2018.01.018

 

Nurhidayati, N., Ali, U., Murwani I. 2016. Yield and quality of cabbage (Brassica oleracea L. var. capitata) under organic growing media using vermicompost and earthworm Pontoscolex corethrurus inoculation. Agriculture and Agricultural Science Procedia, vol. 11, p. 5-13. https://doi.org/10.1016/j.aaspro.2016.12.002

 

Nuutinen, V., Pöyhönen, S., Ketoja, E., Pitkänen, J. 2001. Abundance of the earthworm Lumbricus terrestris in relation to subsurface drainage pattern on a sandy clay field. European Journal of Soil Biology. vol.  37, no. 4, p. 301-304. https://doi.org/10.1016/S1164-5563(01)01105-0

 

Oszmianski, J., Kolniak-Ostek, J., Wojdyło, A. 2013. Characterization and content of flavonol derivarives of Allium ursinum L. plant. Journal of Agricultural and Food Chemistry, vol. 61, no. 1, p. 176-184. https://doi.org/10.1021/jf304268e PMid:23249145  

 

Padmavathiamma, P. K., Loretta, Y. Li., Kumari, U. R. 2008. An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresource Technology. vol. 99, p. 1672-1681. https://doi.org/10.1016/j.biortech.2007.04.028

 

Rämert, B., Bugg, R. L., Clark, M. S., Werner, M. R., McGuinn, R. P., Poudel, D. D., Berry, A. M. 2002. Influence of Lumbricus terrestris inoculation on gree nmanure disappearance and the decomposer community in a walnut orchard. Soil Biology and Biochemistry, vol. 33, p. 1509-1516. https://doi.org/10.1016/S0038-0717(01)00066-9

 

Razaq, M., Zhang, P., Shen, H. L., Salahuddin. 2017 Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One, vol. 12, no. 2, e0171321. https://doi.org/10.1371/journal.pone.0171321  

 

Ražná, K., Khasanova, N., Ivanišová, E., Qahramon, D., Habán, M. 2018. Antioxidant properties of cumin (Bunium Persicum boiss.) extract and its protective role against ultrasound-induced oxidative stress tested by microrna based markers.  Potravinarstvo Slovak Journal of Food Sciences, vol. 12, 2018, no. 1, p. 11-19. https://doi.org/10.5219/838  

 

Santos, C., Fonseca, J., Aires, A., Coutinho, J., Trinidade, H. 2017. Effect of different rates of spent coffee grounds (SCG) on composting process, gaseous emissions and quality of end-product. Waste Management, vol. 59, p. 37-47. https://doi.org/10.1016/j.wasman.2016.10.020  

 

Scheuerell S. J. 2004. Compost tea production practices, microbial properties, and plant disease suppression. In Soil and compost eco-biology, León-Spain, SoilAce : Spain, p. 41-51.

 

Spurgeon, D. J., Keith, A. M., Schmidt, O., Lammertsma, D. R., Faber, J. H. 2013. Landuse and land-management change: relationships with earthworm and fungi communities and soil structural properties. BMC Ecoogy. vol. 13, 46. https://doi.org/10.1186/1472-6785-13-46

 

Xiang, H., Zhang, J., Guo, L., Zhao, B. 2016. In situ earthworm breeding in orchards significantly improves the growth, quality and yield of papaya (Carica papaya L.). PeerJ, 4:e2752; https://doi.org/10.7717/peerj.2752

 

Published
2018-07-11
How to Cite
Kováčik, P., Šalamún, P., Smoleń, S., Škarpa, P., Šimanský, V., & Moravčík, Ľuboš. (2018). Determination of the carrot (Daucus carota L.) yields parameters by vermicompost and earthworms (Eisenia foetida). Potravinarstvo Slovak Journal of Food Sciences, 12(1), 520-526. https://doi.org/10.5219/946