Production of T-2 toxin and deoxynivalenol in the presence of different disinfectants
Abstract
The aim of the work was to examine the effect of different disinfectants on production trichothecenes (especially of T-2 toxin and deoxynivalenol). Lipophilicity, chemical structure, the presence of bioactive groups and functional groups in their structure modifies biological activity and toxic potency of trichothecenes. For this reason, limits have been established designating maximum levels of mycotoxins in cereals while maintaining proper growing practices. Appropriate nutritive media were prepared with different concentration of tested disinfectants (Desanal A plus, ProCura spray and Guaa-Pool) and were inoculated using Fusarium strains. The density of Fusarium was 105 spores per mililitre. Nutrient media was cultivated at 15 °C and 25 °C for seven days. The strains of Fusarium graminearum CCM F-683 and Fusarium species (isolated from barley) produced quantities of deoxynivalenol. Fusarium poae CCM F-584 and Fusarium species (isolated from malthouse air) produced quantities of T-2 toxin. Desanal A plus prevented Fusarium growth and production of T-2 toxin and deoxynivalenol at the concentration 10%. It is an alkaline disinfectant on the basis of active chlorine and the surfactant that contains ˂5% of NaClO. ProCura spray at the concentration 0.6% proved to be very effective. This disinfectant contains 35% of propan-1-ol and 25% of propan-2-ol. Guaa-Pool at the concentration 0.004% proved to be very effective. It is a polymeric disinfectant with anion surface-acting agent and it contains ˂0.9% of polyhexamethylene guanidine hydrochloride and ˂0.2% of alkyl (C12-C16) dimethylbenzyl ammonium chloride. Lower contentration of disinfectants that not prevented growth of Fusarium caused higher production of T-2 toxin and deoxynivalenol. The contents of T-2 toxin and deoxynivalenol were analyzed by enzyme-linked immunosorbent assay (ELISA) using commercially produced kits (Agra Quant® Deoxynivalenol Test kit and Agra Quant® T-2 toxin Test kit). The experiment showed that the variability in the production of T-2 toxin and deoxynivalenol depended on the Fusarium strain used, concentration of disinfectants and temperature of cultivation.
References
Běláková, S., Benešová, K., Mikulíková, R., Svoboda, Z. 2012. Factors Affecting Gushing. Kvasný Průmysl, vol. 56, no. 3, p. 131-137. ISSN 0023-5830.
Bottalico, A., Perrone, G. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. European Journal of Plant Pathology, vol. 108, no. 7, p. 611-624. http://dx.doi.org/10.1023/A:1020635214971
Bryden, W. L. 2007. Mycotoxins in the food chain: human health implications. Asia Pacific Journal of Clinical Nutrition, vol. 16, no. S1, p. 95-101. PMid:17392084
Creppy, E. E. 2002. Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicology Letters, vol. 127, no. 1-3, p. 19-28. http://dx.doi.org/10.1016/S0378-4274(01)00479-9 PMid:12052637
Delgado, J. A., Schwarz, P. B., Viviana, J. G., Rivera-Varas, V., Gary A. 2010. Trichothecene mycotoxins associated with potato dry rot caused by Fusarium graminearum. Phytopathology, vol. 100, no. 3, p. 290-296. http://dx.doi.org/10.1094/PHYTO-100-3-0290 PMid:20128703
Desjardins, A. E. 2006. Fusarium Mycotoxins, Chemistry, Genetics, and Biology. 1st ed. Minnesota, USA: The American Phytopathological Society, 260 p. ISBN 0-89054-335-6.
D'Mello, J. P. F., Palcinta, C. M., Macdonald, A. M. C. 1999. Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity. Animal Feed Science and Technology, vol. 80, no. 3, p. 183-205. http://dx.doi.org/10.1016/S0377-8401(99)00059-0
Gärtner, B. H., Munich, M., Kleijer, G., Mascher, F. 2008. Characterisation of kernel resistance against Fusarium infection in spring wheat by baking quality and mycotoxin assessments. European Journal of Plant Pathology, vol. 120, no. 1, p. 61-68. http://dx.doi.org/10.1007/s10658-007-9198-5
Haidukowski, M., Visconti, A, Perrone, G., Vanadia, S., Pancaldi, D., Covarelli, L., Balestrazzi, R., Pascale, M. 2012. Effect of prothioconazole-based fungicides on Fusarium head blight, grain yield and deoxynivalenol accumulation in wheat under field conditions. Phytophatologia Mediterranea, vol. 51, no. 1, p. 236-246. [cit.2013-05-09] Retrieved from the web: http://www.fupress.net/index.php/pm/article/view/9401/10304
Havlová, P., Lancová, K., Váňová, M., Havel, J., Hajšlová, J. 2006. The effect of fungicide treatment on selected duality parameters of barley and malt. Journal of Agricultural and Food Chemistry, vol. 54, no. 4 p. 1353-1360. http://dx.doi.org/10.1021/jf0581372 PMid:16478260
Heier, T., Jain, S. K., Kogel, K. H., Pons-Kühnemann, J. 2005. Influence of N-fertilization and fungicide strategies on Fusarium head blight severity and mycotoxin content in winter wheat. Journal of Phytopathology,
vol. 153, no. 9, p. 551-557. http://dx.doi.org/10.1111/j.1439-0434.2005.01021.x
Hlaváčková, L., Vytřasová, J, Novotná, Š., Moťková-Šnévajsová, P., Brožková, I., Honzlová, A. 2012. Effect of selected microorganisms on Fusarium toxins production. Analytical Letters, vol. 45, no. 7, p. 702-713. http://dx.doi.org/10.1080/00032719.2011.653895
Hostynek, J. J., Wilhelm, K. p., Cua, A. B., Maibach, H. I. 2006. Irritation factors of sodium hypochlorite solutions in human skin. Contact Dermatitis, vol. 23, no. 5, p. 316-324. http://dx.doi.org/10.1111/j.1600-0536.1990.tb05165.x PMid:1965715
Hrubošová-Hrmová, D., Vytřasová, J., Moťková, P. 2011. Effect of selected fungicides on Fusarium growth and toxins production. Czech Journal of Food Sciences, vol. 29, p. S69-S75. [cit.2013-05-09] Retrieved from the web: http://www.agriculturejournals.cz/publicFiles/54736.pdf
Hussein, S. H, Brasel, J. M. 2001. Toxicity, metabolism and impact of mycotoxins on humans and animals. Toxicology, vol 167, no. 2, p. 101-134. PMid:11567776
Kokkonen, M., Ojala, L., Parikka, P., Jestoi, M. 2010. Mycotoxin production of selected Fusarium species at different culture conditions. International Journal of Food Microbiology, vol. 143, no. 1-2, p. 17-25. http://dx.doi.org/10.1016/j.ijfoodmicro.2010.07.015 PMid:20708288
Krska, R., Welzig, E., Boudra, H. 2007. Analysis of Fusarium toxins in feed. Animal Feed Science and Technology, vol. 137, no. 3, p. 241-264. http://dx.doi.org/10.1016/j.anifeedsci.2007.06.004
Li, Y., Wang, Z., Beier, R. C., Shen, J., De Smet, D., De Seager, S., Zhang, S. 2011. T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. Joural of Agricultural and Food Chemistry, vol. 59, no. 8, p. 3441-3453. http://dx.doi.org/10.1021/jf200767q
Malachová, A., Hajšlová, J., Ehrenbergerová, J., Kostelánská, M., Zachariášová, M., Urbanová, J., Cerkal, R., Šafránková, I., Marková, J., Vaculová, K., Hrstková, P. 2010. Fusarium mycotoxins in spring barley and their transfer into malt. Kvasný Průmysl, vol. 56, no. 3, p. 131-137. ISSN 0023-5830.
Malíř, F., Ostrý, V. 2003. Fungi, mycotoxins and human health. (in Czech) 1st ed. Adamov, Czech Republic: Mikada, 349 p. ISBN 80-7013-395-3.
Monaci, L., De Angelis, E., Visconti, A. 2011. Determination of deoxynivalenol, T-2 and HT-2 toxins in a bread model food by liquid chromatography-high resolution-orbitrap-mass spectrometry equipped with a high-energy collision dissociation cell. Journal of Chromatography A, vol. 1218, no. 48, p. 8646-8654. http://dx.doi.org/10.1016/j.chroma.2011.10.008 PMid:22033110
Noske, G. L., Shearer, B. L. 1985. Quaternary ammonium compounds were more effective than a phenolic compound or sodium hypochlorite in lnhibitlng growth of Phytophthora cinnamomi (rands). Australasian Plant Pathology, vol. 14, no. 2, p. 37-40. http://dx.doi.org/10.1071/APP9850037
Pestka, J. J., Zhou, H. R., Moon, Y., Chung, Y. J. 2004. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicology Letters, vol. 153, no. 1, p. 61-73. http://dx.doi.org/10.1016/j.toxlet.2004.04.023 PMid:15342082
Reynolds, K. A., Boone, S., Bright, K. R., Gerba, C. P. 2012. Occurrence of household mold and efficacy of sodium hypochlorite disinfectant. Journal of Occupational and Environmental Hygiene, vol. 9, no. 11, p. 663-669. http://dx.doi.org/10.1080/15459624.2012.724650 PMid:23016564
Schollenberger, M., Muller, H. M., Rufle, M., Terry-Jara, H., Suchý, S., Plank, S., Drochner, S. 2007. Natural occurrence of Fusarium toxins in soy food marketed in Germany. International Journal of Food Microbiology,
vol. 113, no. 2, p. 142-146. http://dx.doi.org/10.1016/j.ijfoodmicro.2006.06.022 PMid:16854487
Snijders, Ch. 2004. Resistance in wheat to Fusarium infection and trichothecene formation. Toxicology Letters, vol. 153, no. 1, p. 37-46. http://dx.doi.org/10.1016/j.toxlet.2004.04.044
Suchomel, M., Gnant, W., Weinlich, M., Rotter, M. 2009. Surgical hand disinfection using alcohol: the effects of alcohol type, mode and duration of application. Journal of Hospital Infection, vol. 71, no. 3, p. 228-233. http://dx.doi.org/10.1016/j.jhin.2008.11.006 PMid:19144448
Suchý, P., Herzig, I. 2005. Fungi and mycotoxins, prevention and decontamination in feed. (in Czech) VÚVL and VFU, Brno, [online] a.s. [cit.2013-05-09] Available at: http://www.bezpecna-krmiva.cz/soubory/2-studie_prof_sucheho.rtf
Sudakin, D. L. 2003. Trichothecenes in the environment: relevance to human health. Toxicology Letters, vol. 143, no. 2, p. 97-107. http://dx.doi.org/10.1016/S0378-4274(03)00116-4 PMid:12749813
Thammawong, M., Okadome, H., Shiina, T., Nakagawa, H., Nagashima, H., Nakajima, T., Kushiro, M. 2011. Distinct distribution of deoxynivalenol, nivalenol, and ergosterol in Fusarium-infected Japanese soft red winter wheat milling fractions. Mycopathologia, vol. 172, no. 4, p. 323-330. http://dx.doi.org/10.1007/s11046-011-9415-9 PMid:21424857
Vasatkova, A., Krizova, S., Adam, V., Zeman, L., Krizek R. 2009. Changes in metallothionein level in rat hepatic tissue after administration of natural mouldy wheat. International Journal of Molecular Sciences, vol. 10, no. 3, p. 1138-1160. http://dx.doi.org/10.3390/ijms10031138 PMid:19399242
Wessels, S., Ingmer, H. 2013. Modes of action of three disinfectant active substances: a review. Regulatory Toxicology and Pharmacology, vol. 67, no. 3, p. 456-467. http://dx.doi.org/10.1016/j.yrtph.2013.09.006 PMid:24080225
Weidenbőrner, M. 2001. Encyclopedia of Food Mycotoxins. Berlin, Germany: Springer - Verlag, Heidelberg, p. 93-110, ISBN 978-3-662-04464-3.
Wu, Q., Engemann, A., Cramer, B., Welsch, T., Yuan, Z., Humpf, H. U. 2012. Intestinal metabolism of T-2 toxin in the pig cecum model. Mycotoxin Research, vol. 28, no. 3, p. 191-198. http://dx.doi.org/10.1007/s12550-012-0134-y PMid:23606127
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





















