Antioxidant profile of mulled wine
DOI:
https://doi.org/10.5219/1070Keywords:
Cabernet Moravia, mulled wine, spices, cloves, cinnamon, antioxidantsAbstract
The aim of the study was to compare chemical and nutritional profile of wine and heat-treated wine, called mulled wine. The experiment was focused on simulation of ordinary produce mulled wine by the majority of consumers. Cabernet Moravia (bottled in Velkobílovická vína s.r.o., Czech Republic) was used for the experimental production of mulled wine. Following spices were added to wine during cooking: cloves (Vitana, Czech Republic) and cinnamon (KOTíNY, Austria). The samples of wine were heat treated in stainless steel pot for 5 minutes. The relative density, acidity, alcohol content, phenol content and antioxidant capacity were monitored in experimentally produced wine and mulled wine. The gained results showed that samples of mulled wine with added cloves had statistically significant (p <0.05) higher phenol content and higher antioxidant properties in comparison with wine before heat treatment and spices addition. The results clearly showed that mulled wine can be considered as the product with better health beneficial nutritional profile than wine from which it is produced; in addition, mulled wine sample had significantly (p <0.05) lower alcoholic content (8.27 ±0.04 vol.%).
References
Artero, A., Artero, A., Tarin, J. J., Cano, A. 2015. The impact of moderate wine consumption on health. Maturitas, vol. 80, p. 3-13. https://doi.org/10.1016/j.maturitas.2014.09.007
Bajčan, D., Vollmannová, A., Šimanský, V., Bystrická, J., Trebichalský, P., Árvay, J., Czako, P. 2016. Antioxidant activity, phenolic content and colour of the Slovak cabernet sauvignon wines. Potravinarstvo, vol. 10, p. 89-94. https://doi.org/10.5219/534
Balík, J., Kumšta, M. 2008. Evaluation of colour content in grapes originating from South Moravia. Czech Journal of Food Sciences, vol. 26, p 18-24. https://doi.org/10.17221/240/2008-CJFS
Ben–Arfa, B. A. E., Salvado, I. M. M., Ferreira, J. M. F., Pullar, R. C. 2019. Clove and cinnamon: Novel anti–oxidant fuels for preparing magnetic iron oxide particles by the sol–gel auto–ignition method. Journal of Alloys and Compounds, vol. 786, p. 71-76. https://doi.org/10.1016/j.jallcom.2019.01.306
Boban, N., Tonkic, M., Modun, D., Budimir, D., Mudnic, I., Sutlovic, D., Punda-Polic, V., Boban, M. 2010. Thermally treated wine retains antibacterial effects to food-born pathogens. Food control, vol. 21, p. 1161-1165. https://doi.org/10.1016/j.foodcont.2010.01.012
Cepeda, E., Villarán, M. C. 1999. Density and viscosity of Malus floribunda juice as a function of concentration and temperature. Journal of Food Engineering, vol. 41, no. 2, p. 103-107. https://doi.org/10.1016/S0260-8774(99)00077-1
Chiva-Blanch, G., Urpi-Sarda, M., Ros, E., Valderas-Martinez, P., Casas, R., Arranz, S., Guillén, M., Lamuela-Raventos, R. M., Llorach, R., Andres-Lacueva, C., Estruch, R. 2013. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: A randomized clinical trial. Clinical Nutrition, vol. 32, no. 2, p. 200-206. https://doi.org/10.1016/j.clnu.2012.08.022
Contreras, A., Hidalgo, C., Henschke, P. A., Chambers, P. J., Curtin, C., Varela, C. 2014. Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Applied and Environmental Microbiology, vol. 80, p. 1670-1678. https://doi.org/10.1128/AEM.03780-13
Grant, M. 2010. Who is listening?,. In Proceedings of Fourteenth Australian Wine Industry Technical Conference. AWITC Inc, Glen Osmond, Adelaide, South Australia, Australia, p. 25-27. ISBN 978-0-9870480-9-7.
Gulcin, I., Sat, I. G., Beydemir, S., Elmastas, M. Kufrevioglu, O. I. 2004. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chemistry, vol. 87, no. 3, p. 393-400. https://doi.org/10.1016/j.foodchem.2003.12.008
Leino, M., Francis, I. L., Kallio, H., Williams, P. J. 1993. Gas Chromatographic headspace analysis of Chardonnay and Semillon wines after thermal processing Gaschromatographische Kopfraum-Analyse der erhitzten Chardonnay-und Semillon-Weine. Zeitschrift für Lebensmittel-Untersuchung und Forschung, vol. 197, no. 1, p. 29-33. https://doi.org/10.1007/BF01202696
MacAvoy, M. G. 2010. Wine-harmful or healthy? What is being considered in Australia and New Zealand? In Proceedings of Fourteenth Australian Wine Industry Technical Conference. AWITC Inc, Glen Osmond, Adelaide, South Australia, Australia. p. 28-31. ISBN 978-0-9870480-9-7.
Mudnić, I., Budimir, D., Jajić, I., Boban, N., Sutlović, D., Jerončić, A., Boban, M. 2011. Thermally Treated Wine Retains Vasodilatory Activity in Rat and Guinea Pig Aorta. Journal of Cardiovascular Pharmacology, vol. 57, no. 6, p. 707-711. https://doi.org/10.1097/FJC.0b013e3182192247
Naegele, E. 2013. Determination of Chlorogenic Acid in Coffee Products According to DIN 10767. Food Testing and Agriculture-Food Authenticity, 1-8. Available at: https://www.gimitec.com/file/5991-2852EN.pdf
OIV. 2009. Compendium of international methods of wine and must analysis. International Organisation of Vine and Wine, Paris, p. 154-196.
Pinelo, M., Manzocco, L., Nuñez, M. J. Nicoli, M. C. 2004. Interaction among phenols in food fortification: negative synergism on antioxidant capacity. Journal of Agricultural and Food Chemistry, vol. 52, no. 5, p. 1177-1180. https://doi.org/10.1021/jf0350515
Santin, J. R., Lemos, M., Klein-Júnior, L. C., Machado, I. D., Costa, P., de Oliveira, A. P., Tilia, C., de Souza, J. P., de Sousa, J. P. B., Bastos, J. K., de Andrade, S. F. 2011. Gastroprotective activity of essential oil of the Syzygium aromaticum and its major component eugenol in different animal models. Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 383, no. 2, p. 149-158. https://doi.org/10.1007/s00210-010-0582-x
Serafini, M., Maiani, G., Ferro-Luzzi, A. 1997. Effect of ethanol on red wine tannin–protein (BSA) interactions. Journal of Agricultural and Food Chemistry, vol. 45, no. 8, p. 3148-3151. https://doi.org/10.1021/jf960864x
Snopek, L., Mlček, J., Fic, V., Hlaváčova, I., Škrovánková, S., Fisera, M., Velichová, H., Ondrášova, M. 2018. Interaction of polyphenols and wine antioxidants with its sulfur dioxide preservative. Potravinarstvo Slovak Journal of Food Sciences, vol. 12, no. 1, p. 180-185. https://doi.org/10.5219/899
Sukorini, H., Sangchote, S., Khewkhom, N. 2013. Control of postharvest green mold of citrus fruit with yeasts, medicinal plants, and their combination. Postharvest biology and technology, vol. 79, p. 24-31. https://doi.org/10.1016/j.postharvbio.2013.01.001
Talcott, S. T., Howard, L. R., Brenes, C. H. 2000. "Antioxidant changes and sensory properties of carrot puree processed with and without periderm tissue." Journal of agricultural and food chemistry, vol. 48, no. 4, p. 1315-1321. https://doi.org/10.1021/jf9910178
Tanchev, S., Ioncheva, N., Genov, N., Malchev, E. 1997. Kinetics of the thermal degradation of some phenolic acids. Food/Nahrung, vol. 23, no. 9-10, p. 863-866. https://doi.org/10.1002/food.19790230903
Yamaguchi, T., Katsuda, M., Oda, Y., Terao, J., Kanazawa, K., Oshima, S., Inakuma, T., Ishiguro, Y., Takamura, H., Matoba, T. 2003. Influence of polyphenol and ascorbate oxidases during cooking process on the radicalscavenging activity of vegetables. Food Science and Technology Research, vol. 9, no. 1, p. 79-83. https://doi.org/10.3136/fstr.9.79
Zanchi, D., Poulain, C., Konarev, P., Tribet, C., Svergun, D. I. 2008. Colloidal stability of tannins: Astringency, wine tasting and beyond. Journal of Physics Condensed Matter, vol. 20, 494224 p. https://doi.org/10.1088/0953-8984/20/49/494224
Zorraquín-Peña, I., Esteban-Fernández, A., González de Llano, D., Bartolomé, B., Moreno-Arribas, M. 2019. Wine-Derived Phenolic Metabolites in the Digestive and Brain Function. Beverages, vol. 5, no. 1, 7 p. https://doi.org/10.3390/beverages5010007
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





















