Loop-mediated isothermal amplification (LAMP) for rapid detection of L. monocytogenes in meat
DOI:
https://doi.org/10.5219/1165Keywords:
meat, L. monocytogenes detection, LAMP-methodAbstract
There is a continued need to develop improved rapid methods for detection of foodborne pathogens. Rapid and sensitive methods for enumeration of Listeria monocytogenes are important for microbiological food safety testing purpose. The aim of this project was to evaluate a commercial loop-mediated isothermal amplification (LAMP) based system with bioluminescence, named as 3M™ Molecular Detection Assay (MDA), was validated for the detection of L. monocytogenes in food products with a standard GOST 32031-2012 method as reference. The results of this study revealed that a commercial LAMP-based method performed equally effective compared with method, showing from 94% to 100% specificity and sensitivity, respectively. The LAMP-based method was shown to be rapid and reliable detection technique for L. monocytogenes present at low numbers (10 CFU.g-1) on raw meat and meat products and can be applicable in meat industry. Thus, compared with the microbiological method based GOST 32031-2012, the LAMP assay is a relatively rapid and highly sensitive method for detecting L. monocytogenes and will facilitate the surveillance for contamination of L. monocytogenes in food. The 3M MDS result and culture-based detection (GOST 32031-2012) did not differ significantly (p >0.05) regarding the number of positive samples.
Downloads
References
Abdulmawjood, A., Wickhorst , J., Hashim, O., Sammra, O., Hassan, A., Alssahen, M., Lämmler, C., Prenger-Berninghoff, E., Kleina, G. 2016. Application of a loop-mediated isothermal amplification (LAMP) assay for molecular identification of Trueperella pyogenes isolated from various origins. Molecular and Cellular Probes, vol. 30, no. 4, p. 205-210. https://doi.org/10.1016/j.mcp.2016.05.003
Allerberger, F., Wagner, M. 2010. Llisteriosis: A Resurgent Foodborne Infection. Clinical Microbiology and Infection, vol. 16, no. 1, p. 16-23. https://doi.org/10.1111/j.1469-0691.2009.03109.x
Bird, P., Fisher, K., Boyle, M., Huffman, T., Benzinger, M. J. Jr., Bedinghaus, P., Flannery, J., Crowley, E., Agin, J., Goins, D., Benesh, D., David, J. 2013. Evaluation of 3M molecular detection assay (MDA) Salmonella for the detection of Salmonella in selected foods: collaborative study. AOAC International, vol. 96, no. 6, p. 1325-1335. https://doi.org/10.5740/jaoacint.13-227
Bogdanovičová, K., Skočková, A., Šťástková, Z., Koláčková, I., Karpíšková, R. 2015. The bacteriological quality of goat and ovine milk. Potravinarstvo Slovak Journal of Food Sciences, vol. 9, no. 1, p. 72-76. https://doi.org/10.5219/438
Carpentier, B., Cerf, O. 2011. Review — Persistence of Listeria monocytogenes in food industry equipment and premises. International Journal of Food Microbiology, vol. 145, no. 1, p. 1-8 https://doi.org/10.1016/j.ijfoodmicro.2011.01.005
EFSA. 2011. Analysis of the baseline survey on the prevalence of Listeria monocytogenes in certain ready-to-eat foods in the European Union, 2010-2011. Part A: Listeria monocytogenes prevalence estimates. EFSA Journal, vol. 11, no. 6, 75 p. https://doi.org/10.2903/j.efsa.2013.3241
EFSA and ECDC. 2017. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal, vol. 15, no. 12, 228 p. https://doi.org/10.2903/j.efsa.2017.5077
Ennaji, H., Timinouni, M., Ennaji, M., Hassar, M., Cohen, N. 2008. Characterization and antibiotic susceptibility of Listeria monocytogenes isolated from poultry and red meat in Morocco. Infection and drug resistance, vol. 2008, no. 1, p. 45-50. https://doi.org/10.2147/IDR.S3632
Feldsine, P., Abeyta, C., Andrews, W. H. 2002. AOAC International methods committee guidelines of validation of qualitative and quantitative food microbiological official methods of analysis. J. AOAC Int., vol. 85, p. 1187-1200.
Gandhi, M., Chikindas, M. L. 2007. Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology, vol. 113, no. 1, p. 1-15 https://doi.org/10.1016/j.ijfoodmicro.2006.07.008
Garrido-Maestu, A., Azinheiro, S., Carvalho, J., Abalde-Cela, S., Carbó-Argibay, E., Diéguez, L., Prado, M. 2017. Combination of Microfluidic Loop-Mediated Isothermal Amplification with Gold Nanoparticles for Rapid Detection of Salmonella spp. in Food Samples. Frontiers in Microbiology, vol. 8, p. 2159. https://doi.org/10.3389/fmicb.2017.02159
Gianfranceschi, M. V., Rodriguez-Lazaro, D., Hernandez, M., González-García, P., Comin, D., Gattuso, A., Delibato, E., Sonnessa, M., Pasquali, F., Prencipe, V., Sreter-Lancz, T., Saiz-Abajo, M. J., Pérez-De-Juan, J., Butrón, J., Kozačinski, L., Tomic, D. H., Zdolec, N., Johannessen, G. S., Jakočiūnė, D., Olsen, J. E., De Santis, P., Lovari, S., Bertasi, B., Pavoni, E., Paiusco, A., De Cesare, A., Manfreda, G., De Medici, D. 2014. European validation of a real-time PCR-based method for detection of Listeria monocytogenes in soft cheese. Int. J. Food Microbiol., vol. 184, 128-133. https://doi.org/10.1016/j.ijfoodmicro.2013.12.021
GOST 32031-2012. Food products. Methods for detection of Listeria monocytogenes.
Indrawattana, N., Nibaddhasobon, T., Sookrung, N., Chongsa-Nguan, M., Tungtrongchitr, A., Makino, S., Tungyong, W., Chaicumpa, W. 2011. Prevalence of Listeria monocytogenes in raw meats marketed in Bangkok and characterization of the isolates by phenotypic and molecular methods. Journal of Health Population and Nutrition, vol. 29, no. 1, p. 26-38. https://doi.org/10.3329/jhpn.v29i1.7565
Koch, J., Dworak, R., Prager, R., Becker, B., Brockmann, S., Wicke, A., Wichmann-Schauer, H., Hof, H., Werber, D., Stark, K. 2010. Large listeriosis outbreak linked to cheese made from pasteurized milk, Germany, 2006-2007. Foodborne pathogens and diseases, vol 7, no. 12, p. 1581-1584. https://doi.org/10.1089/fpd.2010.0631
Koreňová, J., Oravcová, K. 2011. Persistence of l. monocytogenes versus adherence on solid surface. Potravinarstvo, vol. 5, no. 2, p. 41-44. https://doi.org/10.5219/135
Law, J. W., Ab Mutalib, N. S., Chan, K. G., Lee, L. H. 2015. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Frontiers in Microbiology, vol. 5, p. 770. https://doi.org/10.3389/fmicb.2014.00770
Lim, H. S., Zheng, Q., Miks-Krajnik, M., Turner, M., Yuk, H. G. 2015. Evaluation of commercial kit based on loop-mediated isothermal amplification for rapid detection of low levels of uninjured and injured Salmonella on duck meat, bean sprouts, and fishballs in Singapore. J. Food Prot., vol. 78, no. 6, p. 1203-1207. https://doi.org/10.4315/0362-028X.JFP-14-535
Mikš-Krajnik, M., Lim, H., Zheng, Q., Turner, M., Yuk, H. 2015. Loop-mediated isothermal amplification (LAMP) coupled with bioluminescence for the detection of Listeria monocytogenes at low levels on food contact surfaces. Food Control, no. 60, p. 237-240 https://doi.org/10.1016/j.foodcont.2015.07.035
Miya, S., Takahashi, H., Nakagaw, M., Kuda, T., Igimi, S., Kimura, B. 2015. Genetic Characteristics of Japanese Clinical Listeria monocytogenes Isolates. PLoS One, vol. 10. https://doi.org/10.1371/journal.pone.0122902
Rip, D., Gouws, P. A. 2009. Development of an internal amplification control using multiplex PCR for the detection of Listeria monocytogenes in food products. Food Anal. Methods, vol. 2, p. 190-196. https://doi.org/10.1007/s12161-009-9081-4
Seyrig, G., Stedtfeld, R. D., Tourlousse, D. M., Ahmad, F., Towery, K., Cupples, A. M., Tiedje, J. M., Hashsham, S. A. 2015. Selection of fluorescent DNA dyes for real-time LAMP with portable and simple optics. J. Microbiol. Methods, vol. 119, p. 223-227. https://doi.org/10.1016/j.mimet.2015.11.004
Self, J. L., Conrad, A., Stroika, S., Jackson, A., Whitlock, L., Jackson, K. A., Beal, J., Wellman, A., Fatica, M. K., Bidol, S., Huth, P. P., Hamel, M., Franklin, K., Tschetter, L., Kopko, C., Kirsch, P., Wise, M. E., Basler, C. 2019. Multistate Outbreak of Listeriosis Associated with Packaged Leafy Green Salads, United States and Canada, 2015–2016. Emerging Infectious Diseases, vol. 25. no. 8, p. 1461-1468. https://https://doi.org/10.3201/eid2508.180761
Shan, X., Zhang, Y., Zhang, Z., Chen, M., Su, Y., Yuan, Y., Jahangir Alam, M., Yan, H., Shi, L. 2012. Rapid Detection of Food-borne Listeria monocytogenes by Real-time Quantitative Loop-mediated Isothermal Amplification. Food science and biotechnology, vol. 21, no. 1, p. 101-106. https://doi.org/10.1007/s10068-012-0012-6
Swaminathan, B., Gerner-Smidt, P. 2007. The Epidemiology of Human Listeriosis. Microbes and Infection, vol. 9, no. 10, p. 1236-1243. https://doi.org/10.1016/j.micinf.2007.05.011
Centers for Disease Control and Prevention. 2014.
Wachiralurpan, S., Sriyapai T., Areekit S., Kaewphinit T., Sriyapai, P., Santiwatanakul, S., Chansiri, K. 2017. Development of a rapid screening test for Listeria monocytogenes in raw chicken meat using loop-mediated isothermal amplification (LAMP) and Lateral Flow Dipstick (LFD). Food Anal. Methods, vol. 10, no. 11, p. 3763-3772. https://doi.org/10.1007/s12161-017-0949-4
Wachiralurpan, S., Sriyapai, T., Areekit, S., Sriyapai, P., Augkarawaritsawong, S., Santiwatanakul, S., Chansiri, K. 2018. Rapid Colorimetric Assay for Detection of Listeria monocytogenes in Food Samples Using LAMP Formation of DNA Concatemers and Gold Nanoparticle-DNA Probe Complex. Front. Chem., vol. 6. https://doi.org/10.3389/fchem.2018.00090
Wang, Y., Wang, Y., Luo, L., Liu, D., Luo, X., Xu, Y., Hu, S., Niu, L., Xu, J., Ye, C. 2015. Rapid and Sensitive Detection of Shigella spp. and Salmonella spp. by Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification Technique. Frontiers in microbiology, vol. 6. https://doi.org/10.3389/fmicb.2015.01400
Warriner, K., Namvar, A. 2009. What is the hysteria with Listeria? Trends in Food Science & Technology, vol. 6, no. 20, p. 245-254. https://doi.org/10.1016/j.tifs.2009.03.008
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





















