Oryctes rhinoceros larva oil supplementation improves tissue antioxidant status in cholesterol-fed rats
DOI:
https://doi.org/10.5219/1180Keywords:
edible insect, Oryctes rhinoceros larva oil, cholesterol-based diet, oxidative stress, antioxidantAbstract
Experimental evidence from previous study has demonstrated the hypolipidemic effects of Oryctes rhinoceros oil (ORO) when fed as a supplement to a cholesterol-based diet. Due to renew interest in the consumption of insect derived oil, the present study was designed to elucidate the effect of Oryctes rhinoceros oil (ORO) supplementation in comparison to vitamin E on oxidative status in some tissues of rats fed a cholesterol-based diet. Forty (40) Swiss albino rats were divided into 4 groups (n = 10) and maintained on a basal diet (cholesterol free as control), a cholesterol-based diet (5% cholesterol as cholesterol), a cholesterol-based diet supplemented with ORO (cholesterol + ORO) and a cholesterol-based diet supplemented with vitamin E (Cholesterol + vit E) for 10 weeks. Animals in the cholesterol group had a significantly
(p <0.05) higher malondialdehyde (MDA), conjugated diene and nitric oxide concentrations in the serum, liver, heart, kidney and lung compared to control, cholesterol + ORO and cholesterol + vit E groups. Tissue glutathione (GSH) concentration was significantly (p <0.05) higher in rats fed cholesterol-based diet supplemented with ORO and vitamin E compared to those fed cholesterol-based diet alone. Xanthine oxidase activity was significantly (p <0.05) reduced in tissues of rats fed ORO and vitamin E supplemented diets compared to cholesterol rat group. In addition, catalase and superoxide dismutase activities in the various tissues examined were significantly (p <0.05) higher in both ORO and vitamin E supplemented groups compared to the cholesterol group. No significant difference was observed between animals fed ORO and vitamin E supplemented diets. These results showed that Oryctes rhinoceros larva oil exhibited similar protective effects to vitamin E against diet-induced oxidative stress in rats. In addition, data from this study showed that Oryctes rhinoceros larva oil possessed antioxidant property. Overall, the potential nutritional benefit of Oryctes rhincoceros larva oil consumption on cardiovascular health could possibly involve its ability to upregulation of cellular antioxidant defense mechanisms.
Downloads
References
Adefegha, S. A., Oboh, G., Adefegha, O. M., Boligon, A. A., Athayde, M. L. 2014. Antihyperglycemic, hypolipidemic, hepatoprotective and antioxidative effects of dietary clove (Szyzgium aromaticum) bud powder in a high‐fat diet/streptozotocin‐induced diabetes rat model. Journal of the Science of Food and Agriculture, vol. 94, no. 13, p. 2726-2737. https://doi.org/10.1002/jsfa.6617
Aebi, H. 1984. Catalase in vitro. In Fleischer, S., Packer, L. Methods in Enzymology. Elsevier. vol. 105, p. 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
Belghit, I., Liland, N. S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagbø, R., Krogdahl, Å., Lock, E. J. 2019. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, vol. 503, p. 609-619. https://doi.org/10.1016/j.aquaculture.2018.12.032
Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., Kalayci, O. 2012. Oxidative stress and antioxidant defense. World Allergy Organization Journal, vol. 5, no. 1, 9 p. https://doi.org/10.1097/WOX.0b013e3182439613
Bouayed, J., Bohn, T. 2010. Exogenous antioxidantsdouble-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Medicine and Cellular Longevity, vol. 3, no. 4, p. 228-237. https://doi.org/10.4161/oxim.3.4.12858
Buege, J. A., Aust, S. D. 1978. Microsomal lipid peroxidation. In Fleischer, S., Packer, L. Methods in Enzymology. Elsevier. vol. 52, p. 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6
Celebi, S., Utlu, N. 2006. Influence of animal and vegetable oil in layer diets on performance and serum lipid profile. International Journal of Poultry Science, vol. 5, no. 4, p. 370-373. https://doi.org/10.3923/ijps.2006.370.373
Chang, C. I., Liao, J. C., Kuo, L. 2001. Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Research, vol. 61, no. 3, p. 1100-1106. Available at: https://cancerres.aacrjournals.org/content/61/3/1100.short
Farombi, E. O., Nwaokeafor, I. A. 2005. Anti‐oxidant mechanisms of kolaviron: studies on serum lipoprotein oxidation, metal chelation and oxidative membrane damage in rats. Clinical and Experimental Pharmacoly and Physioogy, vol. 32, no. 8, p. 667-674. https://doi.org/10.1111/j.0305-1870.2005.04248.x
Gomez‐Cabrera, M. C., Borrás, C., Pallardó, F. V., Sastre, J., Ji, L. L., Viña, J. 2005. Decreasing xanthine oxidase‐mediated oxidative stress prevents useful cellular adaptations to exercise in rats. The Journal of Physiology, vol. 567, no. 1, p. 113-120. https://doi.org/10.1113/jphysiol.2004.080564
Gornall, A. G., Bardawill, C. J., David, M. M. 1949. Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, vol. 177, no. 2, p. 751-766.
ILAR. 1985. Committee on Care, Use of Laboratory Animals, National Institutes of Health (US). Division of Research Resources. Guide for the care and use of laboratory animals. National Academies.
Kang, B. P., Bansal, M. P., Mehta, U. 1998. Selenium supplementation and diet induced hypercholesterolemia in the rat: changes in lipid levels, malonyldialdehyde production and the nitric oxide synthase activity. General Physiology and Biophysics, vol. 17, p. 71-78. Available at: http://www.gpb.sav.sk/1998/1998_01_71.pdf
Litwack, G., Bothwell, J. W., Williams, J. N., Elvehjem, C. A. 1953. A colorimetric assay for xanthine oxidase in rat liver homogenates. Journal of Biological Chemistry, vol. 200, no. 1, p. 303-310. Available at: https://www.ncbi.nlm.nih.gov/pubmed/13034787
McCord, J. M., Fridovich, I. 1969. Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, vol. 244, no. 22, p. 6049-6055. Available at: http://www.jbc.org/content/244/22/6049.short
Moron, M. S., Depierre, J. W., Mannervik, B. 1979. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 582, no.1, p. 67-78. https://doi.org/10.1016/0304-4165(79)90289-7
Nevin, K. G., Rajamohan, T. 2006. Virgin coconut oil supplemented diet increases the antioxidant status in rats. Food Chemistry, vol. 99, no. 2, p. 260-266. https://doi.org/10.1016/j.foodchem.2005.06.056
Niki, E., Kawakami, A., Saito, M., Yamamoto, Y., Tsuchiya, J., Kamiya, Y. 1985. Effect of phytyl side chain of vitamin E on its antioxidant activity. Journal of Biological Chemistry, vol. 260, no. 4, p. 2191-2196. Available at: http://www.jbc.org/content/260/4/2191.short
Ojieh, G. C., Idokpesi, G. O., Eidangbe, G. O., Omage, K., Oluba, O. M. 2009. Hydrogenation impairs the hypolipidemic and antioxidant effects of palm oil in rats. International Journal of Physical Sciences, vol. 4, no. 7, p. 407-411. Available at: http://www.academicjournals.org/ijps/PDF/pdf2009/July/Ojieh%20et%20al.pdf
Oluba, O. M. 2019. Erythrocyte Lipid and Antioxidant Changes in Plasmodium falciparum-infected Children Attending Mother and Child Hospital in Akure, Nigeria. Pakistan Journal of Biological Sciences, vol. 22, no. 6, p. 257-264. https://doi.org/10.3923/pjbs.2019.257.264
Oluba, O. M., Adeyemi, O., Adebisi, K. E., Isiosio, L. O., Aboluwoye, C. O. 2008b. Effects of dietary cholesterol on some serum enzymes. Journal of Medical Sciences, vol. 8, no. 4, p. 390-394. https://doi.org/10.3923/jms.2008.390.394
Oluba, O. M., Adeyemi, O., Ojieh, G. C., Aboluwoye, C. O., Eidangbe, G. O. 2008a. Comparative effect of soybean oil and palm oil on serum lipids and some serum enzymes in cholesterol-fed rats. European Journal of Scientific Research, vol. 23, no. 4, p. 559-566.
Oluba, O. M., Eidangbe, G. O., Ojieh, G. C., Idonije, B. O. 2011. Palm and Egusi melon oils lower serum and liver lipid profile and improve antioxidant activity in rats fed a high fat diet. International Journal of Medicine and Medical Sciences, vol. 3, no. 2, p. 47-51. Available at: http://www.academicjournals.org/app/webroot/article/article1378983845_Oluba%20et%20al.pdf
Oluba, O. M., Josiah, S. J., Fagbohunka, B. S. 2014. Effect of Oryctes rhinoceros larva oil supplementation on serum lipid profile and inflammatory markers in mice fed a cholesterol-based diet. Current Research – Cardiology, vol. 1, no. 2, p. 79-83. https://doi.org/10.4172/2368-0512.1000011
Pacher, P., Beckman, J. S., Liaudet, L. 2007. Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, vol. 87, no. 1, p. 315-424. https://doi.org/10.1152/physrev.00029.2006
Recknagel, R. O., Glende Jr, E. A. 1984. Spectrophotometric detection of lipid conjugated dienes. In Fleischer, S., Packer, L. Methods in Enzymology. Elsevier. vol. 105, p. 331-337. https://doi.org/10.1016/S0076-6879(84)05043-6
Sevanian, A., Hochstein, P. 1985. Mechanisms and consequences of lipid peroxidation in biological systems. Annual Review of Nutrition, vol. 5, p. 365-390. https://doi.org/10.1146/annurev.nutr.5.1.365
Teoh, C. H. 2010. Key sustainability issues in the palm oil sector. documento de trabajo para las consultas con múltiples actores (encargado por el Grupo del Banco Mundial). 52 p. Available at: http://www.biofuelobservatory.org/Documentos/Otros/Palm-Oil-Discussion-Paper-FINAL.pdf
Thomas, J. P., Maiorino, M., Ursini, F., Girotti, A. W. 1990. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. Journal of Biological Chemistry, vol. 265, p. 454-461. Available at: http://www.jbc.org/content/265/1/454.short
Traber, M. G., Atkinson, J. 2007. Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine, vol. 43, no. 1, p. 4-15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024
Uttara, B., Singh, A. V., Zamboni, P., Mahajan, R. T. 2009. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacoy, vol. 7, no. 1, p. 65-74. https://doi.org/10.2174/157015909787602823
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., Telser, J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, p. 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
Van Huis, A. 2013. Potential of insects as food and feed in assuring food security. Annual Review of Entomology, vol. 58, p. 563-583. https://doi.org/10.1146/annurev-ento-120811-153704
Womeni, H. M., Linder, M., Tiencheu, B., Mbiapo, F. T., Villeneuve, P., Fanni, J., Parmentier, M. 2009. Oils of insects and larvae consumed in Africa: potential sources of polyunsaturated fatty acids. Oléagineux, Corps Gras, Lipides, vol. 16, no. 4-5-6, p. 230-235. https://doi.org/10.1051/ocl.2009.0279
Yang, H., Zhou, L., Wang, Z., Roberts, L. J., Lin, X., Zhao, Y., Guo, Z. 2009. Overexpression of antioxidant enzymes in ApoE-deficient mice suppresses benzo(a)pyrene-accelerated atherosclerosis. Atherosclerosis, vol. 207, no. 1, p. 51-58.
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





















