Evaluation and comparison of the content of total polyphenols and antioxidant activity in garlic (Allium sativum L.)
DOI:
https://doi.org/10.5219/698Keywords:
antioxidant activity, garlic, total polyphenolsAbstract
Garlic (Allium sativum L.) is one of the oldest cultivated plants in the world and highly valued throughout the ages as a culinary spice. It is a hardy perennial belonging to the Alliaceae family. The garlic bulb is the most commonly used portion of the plant, composed of 5 - 20 individual. It is a very good source of manganese, selenium, vitamin C and vitamin B6 (pyridoxine). In addition, garlic is a good source of other minerals, including phosphorous, calcium, potassium, iron and copper. Many of the perceived therapeutic effects of garlic are thought to be due to its active ingredient allicin. This sulphur-containing compound gives garlic its distinctive pungent smell and taste. Garlic possesses antiviral, antibacterial, anti-fungal properties allowing it to stand against all infections. This work has focused on the evaluation and comparison of total content of polyphenols and antioxidant activity in five varieties of garlic - Mojmír, Záhorský, Lukan, Havran and Makoi. Samples of plant material were collected at the stage of full maturity in the area of Nitra. The total content of polyphenols was determined using the spectrophotometric method of Folin-Ciocalteu agents. Determined the content of total polyphenols in garlic were in the range 621.13 mg.kg-1 (Záhorský) to 763.28 mg.kg-1 (Havran). Total polyphenols content in garlic declined in the following order: Havran >Mojmír >Makoi >Lukan >Záhorský. Antioxidant activity was measured by the spectrophotometric method using a compound DPPH (2.2-diphenyl-1-picryhydrazyl). Statistically significant highest value of antioxidant was recorded in 20.22% (Mojmír) and the lowest value was in 13.61% (Záhorský). The values of antioxidant activity observed in the varieties of garlic may be arranged as follows: Mojmír >Havran >Lukan >Makoi >Záhorský. In all the analysed varieties of garlic was confirmed by the strong dependence of the antioxidant activity and the total content of polyphenols.
Downloads
References
Act No. 220/2004 Coll. Of Laws of Slovak Republic. On the conservation and use of agricul- tural land, amending the Act No. 245/2003 Coll. on integrated pollution prevention and control, amending and supplementing of certain acts, as amended.
Batcioglu, K., Yilmaz, Z., Satilmis, B., Uyumlu, A. B., Erkal, H. S., Yucel, N., Gunals, S., Serin, M., Demirtas, H. 2012. Investigation of in vivo radioprotective and in vitro antioxidant and antimicrobial activity of garlic (Allium sativum). European Review for Medical and Pharmacological Sciences, vol. 16, suppl no. 3, p. 47-57. PMid:22957418
Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft and Technologie, vol. 28, no. 1, p. 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Charles, D. J. 2013. Antioxidant Properties of Spices, Herbs and Other Sources. NY: Springer science. ISBN: 978-1-4614-4310-0.
Chekki, R. Z., Snoussi, A., Hamrouni, I., Bouzouita, N. 2014. Chemical composition, antibacterial and antioxidant activities of Tunisian garlic (Allium sativum) essential oil and ethanol extract. Mediterranean Journal of Chemistry, vol. 3, no. 4, p. 947-956. https://doi.org/10.13171/mjc.3.4.2014.09.07.11
Chen, S., Shen, X., Cheng, S., Li, P., Du, J., Chang, Y., Meng, H. 2013. Evaluation of Garlic Cultivars for Polyphenolic Content and Antioxidant Properties. Plos One, vol. 8, no. 11, p. e79730. https://doi.org/10.1371/journal.pone.0079730
Elhamidi, M. Y. 2010. The Contribution of Fruit and Vegetable Consumption to Human Health. In de la Rosa, L. A., Alvarez-Parrilla, E., González-Aguilar, G. A. Fruit and Vegetable Phytochemicals: Chemistry, Nutritional value and Stability. Wiley-Balcwell, p. 3-53. ISBN: 978-0-8138-0320-3.
Elhamidi, M., Elshami, S. M. 2015. Scavenging Activity of Differnet Garlic Extracts and Garlic Powder and their Antioxidant Effect on Heated Sunflower Oil. American Journal of Food Technology, vol. 10, no. 4, p. 135-146. https://doi.org/10.3923/ajft.2015.135.146
Fritsch, M. R., Friesen, N. 2002. Evolution, domestication and taxonomy. Wallingford UK : CABI Publishing. ISBN: 0851995101. https://doi.org/10.1079/9780851995106.0005
Fritsch, R. M., Blattner, F. R., Gurushidze, M. 2010. New classification of Allium L. subg. Melanocrommyum (Webb & Berthel) Rouy (Alliaceae) based on molecular and morphological characters. Phyton, vol. 49, no. 2, p. 145-220.
Hu, Ch. 2012. Factors affecting phytochemical composition and antioxidant activity of Ontario vegetable crops. Ontario Canada : Guelphl. 208 p. https://doi.org/10214/3592
Jastrzebski, Z., Leontowicz, H., Leontowicz, M., Namiesnik, J., Zachwieja, Z., Barton, H., Pawelzik, E., Arancibia-Avila, P., Toledo, F., Gorinstein, S. 2007. The bioactivity of processed garlic (Allium sativum L.) as shown in vitro and in vivo studies on rats. Food and Chemical Toxicology, vol. 45, no. 9, p. 1626-1633. https://doi.org/10.1016/j.fct.2007.02.028
Kim, J. W., Huh, J. E., Kyung, S. H., Kyung, K. H. 2004. Antimicrobial activity of alk(en)yl sulfides found in essential oils of garlic and onion. Food Science and Biotechnology, vol. 13, no. 2, p. 235-239.
Lachman, J., Proněk, D., Hejtmanková, A., Dudjak, J., Pivec, V., Faitová, K. 2003. Total polyphenol and main flavonoid antioxidant in different onion (Allium cepa L.) varieties. Horticultural Science, vol. 30, no. 4, p. 142-147.
Lanzotti, V. 2006. The analysis of onion and garlic. Journal of Chromatography A, vol. 1112, no. 1-2, p. 3-22. https://doi.org/10.1016/j.chroma.2005.12.016
Pérez-Gregorio, R. M., Garcia-Falcon, M. S., Simal-Gandara, J., Rodriguez, A. S., Almeida, D. P. F. 2009. Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest. Journal of Food Composition and Analysis, vol. 23, no. 6, p. 592-598. https://doi.org/10.1016/j.jfca.2009.08.013
Ramkissoon, J. S., Mahomoodally, M. F., Ahmed, N., Subratty, A. H. 2012. Relationship between total phenolic content, antioxidant potencial, and antiglycation abilities of common culinary herbs and spices. Journal of Medical Food, vol. 15, no. 12, p. 1116-1123. https://doi.org/10.1089/JMF.2012.0113
Rizwani, G. H., Shareef, H. 2011. Genus Allium: The Potential Nutritive and Therapeutic Source. Journal of Pharmacy and Nutrition Sciences, vol. 1, no. 2, p. 158-165. https://doi.org/10.6000/1927-5951.2011.01.02.11
Shalaby, E. A., Shanab, S. M. M. 2013. Antioxidant compounds, assays of determination ad mode of action. African Journal of Pharmacy and Pharmacology, vol. 7, no. 10, p. 528-539. https://doi.org/10.5897/AJPP2013.3474
Shebis, Y., Iluz, D., Kinel-Tahan, Y., Dubinski, Z., Yehoshua, Y. 2013. Natural Antioxidants: Function and Sources. Food and Nutrition Sciences, vol. 4, no. 6, p. 643-649. https://doi.org/10.4236/fns.2013.46083
Srivastava, S., Pathak, P. H. 2012. Garlic (Allium sativum) extract supplementation alters the glycogen deposition in liver and protein metabolism in gonads of female albino rats. International Journal of Pharmaceutical Sciences and Drug Research, vol. 4, no. 2, p. 126-129.
Tepe, B., Sokmen, M., Akpulat, H., Sokmen, A. 2005. In vitro antioxidant activities of the methanol extract of five species from Turkey. Food Chemistry, vol. 92, no. 1, p. 89-92. https://doi.org/10.1016/j.foodchem.2004.04.030
Trifunschi, S., Munteanu, M. F., Agotici, V., Pitea, S., Gligor, R. 2015. Determination of Flavonoid and Polyphenol Compounds in Viscum Album and Allium sativum Extract. International Current Pharmaceutical Journal, vol. 4, no. 5, p. 382-385. https://doi.org/10.3329/icpj.v4i5.22861
Tsao, R. 2010. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients, vol. 2, no. 12, p. 1231-1246. https://doi.org/10.3390/nu2121231
Vlase, L., Parvu, M., Parvu, E. A., Toiu, A. 2013. Chemical Constituents of Three Allium Species from Romania. Molecules, vol. 18, no. 1, p. 114-127. https://doi.org/10.3390/molecules18010114
Wangcharoen, W., Morasuk, W. 2007. Antioxidant capacity and phenolic content of some Thai culinary plants. Maejo International Journal of Science and Technology, vol. 1, p. 100-106.
Wangcharoen, W., Morasuk, W. 2009. Effect of heat treatment on the antioxidant capacity of garlic. Maejo International Journal of Science and Technology, vol. 3, no. 1, p. 60-70.
Yang, J., Meyers, K. J., Van Der Heide, J., Liu, R. H. 2004. Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. Journal of Agricultural and Food Chemistry, vol. 52, no. 22, p. 6787-6793. https://doi.org/10.1021/JF0307144
Young, I. S., Woodside, J. V. 2001. Antioxidants in health and disease. Journal of Clinical Pathology, vol. 54, no. 3, p. 176-186. https://doi.org/ 10.1136/jcp.54.3.176
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





















