Biologically active substances of Camellia sinensis in a humid subtropical climate of Russia

Authors

  • Oksana Belous Subtropical Scientific Centre of the Russian Academy of Sciences, Laboratory of Plants Biochemistry and Physiology, Yana Fabritsiusa st., 2/28, 354002, Sochi, Russia, Tel.: +7(918)1099115 https://orcid.org/0000-0001-5613-7215
  • Natalia Platonova Subtropical Scientific Centre of the Russian Academy of Sciences, Laboratory of Plants Biochemistry and Physiology, Yana Fabritsiusa st., 2/28, 354002, Sochi, Russia, Tel.: +7(918)3057387

DOI:

https://doi.org/10.5219/1440

Keywords:

fresh sprout, biologically active substances, plant antioxidative system, growing and processing conditions, Camellia sinensis L., Russia

Abstract

We did a comparative analysis of tea and raw tea materials. There is an increase in the content of carotenoids and flavonoids (thearubigins and theaflavins) in June, a decline in July, and August, and consequently a slight increase again in other months. The increase is due to unfavorable conditions – drought during these periods. In raw new variety forms No. 855 and No. 582, as well as in black tea variety form No. 582 (0.09 mg.g-1), we determined the high value of theaflavins (0.10; 0.11 and 0.09 mg.g-1, respectively). The highest content of thearubigins was found in variety forms No. 582 and No. 3823 (1.33 mg.g-1 and 1.17 mg.g-1). Ascorbic acid is significantly disintegrated (on average 96 – 97%) in the production of black tea. In green tea, ascorbic acid disintegrates to a lesser extent, leaving about 13% of its initial amount in the raw material. The dynamics of GPOD activity in a 3-leaf sprout are variety-specific. At the beginning of the growing season (May), the activity of the enzyme was low – in the range of 0.363 to 0.607 g-unit in sec. In June, there is a decrease in activity, which, however, is not significant (p <0.05) and is due to the biological characteristics of the tea culture. In green tea, the ruthine is on average 3 times more than in black tea (on average about 38.09 and 12.12 mg.100g-1, respectively). We have identified 11 amino acids; the highest percentage accounted for proline (from 30 to 70%), valine (17 – 30%), and serine (about 10%). We have identified 11 amino acids in Krasnodar tea, a large proportion of these amino acids has proline, valine, and serine. There was a variation in the content of biologically active substances depending on genotype characteristics. Studies have identified some controversial issues that require explanation and further study.

Downloads

Download data is not yet available.

References

Argunova, V. A., Bushin, P. M., Malyukova, L. M. 1994. Principles of optimal programming of tea yields and production of quality products in the development of environmentally friendly systems of mineral nutrition. Subtropical and ornamental gardening, vol. 38, p. 182-190. (in Russian)

Belous, O. G. 2013. Influence of microelements on biochemical parameters of tea. Potravinarstvo, vol. 7, no.1, p. 149-152.

Belous, O. G., Pritula, Z. V. 2010. Influence of trace elements on the biochemical parameters of the tea leaf (Влияние микроэлементов на биохимические показатели чайного листа). Subtropical cultures, vol. 1, no. 4, p. 98-101. (in Russian)

Belous, O., Platonova, N. 2017. Influence of altitude tea plantations above sea level on the chemical composition of tea. Sciences of Europe, vol. 1, no. 22, p. 3-6.

Belous, O., Platonova, N. 2018. Physiological foundations of sustainability Camellia sinensis (L.) O. Kuntze and Corylus pontica C. Koch. in the conditions of humid subtropics of Russia. American Journal of Plant Sciences. Special Issue on Plants in Extreme Environment, vol. 9, no. 9, p. 1771-1780. https://doi.org/10.4236/ajps.2018.99129

Castillo, F. J. 1992. Peroxidases and stress. In Penel, C., Gaspar, T., Greppin, H. Plant Peroxidases 1980-1990. Topics and Detailed Literature on Molecular, Biochemical, and Physiological Aspects. Geneva, Switzerland : Univ of Geneva, p. 187-203.

Castillon, L. E., Hall, C. M., O’Connor, R. T., Miller, C. B. 1949. Effect of temperature on the content of pigments of stored cottonseed. J. Am. Oil Chem. Soc., vol. 26, no. 11, p. 655-659. https://doi.org/10.1007/BF02651507

Dini, A., Khanamani Falahati-Pour, S., Behmaram, K., Sedaghat, N. 2019. The kinetics of color degradation, chlorophylls and xanthophylls loss in pistachio nuts during roasting process. Food Quality and Safety, vol. 3, no. 4, p. 251-263. https://doi.org/10.1093/fqsafe/fyz020

Endo, Y., Usuki, R., Kanedaet, T. 1985. Antioxidant effects of chlorophyll and pheophytin on the autoxidation of oils in the dark. II. The mechanism of antioxidative action of chlorophyll. Journal of the American Oil Chemists’ Society, vol. 62, no. 9, p. 1387-1390. https://doi.org/10.1007/BF02545965

Ferreira, M. C. L., Lima, L. N., Cota, L. H. T., Costa, M. B., Orsi, P. M. E., Espíndola, R. P., Albanez, A. V., Rosa, B. B., Carvalho, M. G. S., Garcia, J. A. D. 2020. Effect of Camellia sinensis teas on left ventricular hypertrophy and insulin resistance in dyslipidemic mice. Brazilian Journal of Medical and Biological Research, vol. 53, no. 5, p. e9303. https://doi.org/10.1590/1414-431x20209303

Gai, Z., Wang, Y., Jiang, J., Xie, H., Ding, Z., Ding, S., Wang, H. 2019. The quality evaluation of tea (Camellia sinensis) varieties based on the metabolics. HortScience, vol. 54, no. 3, p. 409-415. https://doi.org/10.21273/HORTSCI13713-18

Gulati, A., Ravindranath, S. D. 1996. Seasonal variations in quality of Kangra tea (Camellia sinensis (L.) O. Kuntze) in Himachal Pradesh. J. Sci. Food Agric., vol. 71, no. 2, p. 231-236. https://doi.org/10.1002/(SICI)1097-0010(199606)71:2<231::AID-JSFA573>3.0.CO;2-Y

Gvasaliya, М. V. 2019.Perspective mutant forms of tea plants (Camellia sinensis (L.) Kuntze) in the collection of Russian Research Institute of Floriculture and Subtropical Crops. (Перспективные мутантные формы растений чая (Camellia sinensis (L.) Kuntze) в коллекции Всероссийского научно-исследовательского института цветоводства и субтропических культур). Horticulture and viticulture, vol. 6, p. 5-8. https://doi.org/10.31676/0235-2591-2019-6-5-8 (in Russian)

Kang, Y. R., Park, J., Jung, S. K., Chang, Y. H. 2017. Synthesis, characterization, and functional properties of chlorophylls, pheophytins, and Zn-pheophytins. Food Chem., vol. 245, p. 943-950. https://doi.org/10.1016/j.foodchem.2017.11.079

Kareska, S. 2009. Factors affecting hydrogen peroxidase activity. ESSAI, vol. 7, no. 27, p. 82-85. https://dc.cod.edu/essai/vol7/issl/27

Karori, S. M., Wachira, F. N., Wanyoko, J. K., Ngure, R. M. 2007. Antioxidant capacity of different types of tea products. Afr. J. Biotechnol., vol. 6, no. 19, p. 2287-2296. https://doi.org/10.5897/AJB2007.000-2358

Khan, A. A., Robinson, D. S. 1993. Purification of anionic peroxidase isoenzyme from mango (Mangifera indica L. var. Chaunsa). Food Chem., vol. 46, no. 1, p. 61-64. https://doi.org/10.1016/0308-8146(93)90076-R

Khan, N., Mukhtar, H. 2007. Tea polyphenols for health promotion. Life Science, vol. 81, no. 7, p. 519-533. https://doi.org/10.1016/j.lfs.2007.06.011

Konnov, N. A., Platonova, N. B., Belous, O. G. 2019. Comparative analysis of Ruthin content in tea of different climatic zones. In Current achievements and trends in ornamental and medicinal plants research. Jubilee scientific conference 9 may 2019 devoted to the 40th anniversary of the institute of ornamental and medic-inal plants (Sofia, Bulgaria), p. 33.

Kumar, R., Bisen, J. S., Choubey, M., Singh, M., Bera, B. 2015. Studies on effect of altitude and environment on physiological activities and yield of Darjeeling tea (Camellia sinensis L.) plantation. J. Crop Weed, vol. 11, p. 71-79.

Li, X., Zhou, R., Xu, K., Xu, J., Jin, J., Fang, H., He, L. 2018. Rapid Determination of Chlorophyll and Pheophytin in Green Tea Using Fourier Transform Infrared Spectroscopy. Molecules, vol. 23, no. 5, p. 1010. https://doi.org/10.3390/molecules23051010

Li, Y., Chen, C., Li, Y., Ding, Z., Shen, J., Wang, Y., Zhao, L., Xu, M. 2016. The identification and evaluation of two different color variations of tea. J. Sci. Food Agric., vol. 96, no. 15, p. 4951-4961. https://doi.org/10.1002/jsfa.7897

Wang, L., Yue, C., Cao, H., Zhou, Y., Zeng, J., Yang, Y., Wang, X. 2014. Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar. BMC Plant Biology, vol. 14, p. 352. https://doi.org/10.1186/s12870-014-0352-x

Lu, J. L., Pan, S., Zheng, X. Q., Dong, J., Borthakur, D., Liang, Y. R. 2009. Effects of lipophillic pigments on color of the green tea infusion. International Journal of Food Science & Technology, vol. 44, no. 12, p. 2505-2511. https://doi.org/10.1111/j.1365-2621.2009.02069.x

Marimuthu, S., Kumar, R. R. 2001. Physiological and biochemical responses of micropropagated tea plants. Vitro Cell. Dev. Biol.-Plant, vol. 37, p. 618. https://doi.org/10.1007/s11627-001-0108-9

Marinescu, G., Badea, E., Babeanu, C., Glodeanu, E. 1999. Peroxidase system from leaves of Cucumis sativus as marker of growth stimulant treatment. Plant Peroxidase Newsletter, vol. 15, p. 79-85.

McRae, E. A., Ferguson, I. B. 1985. Changes in catalase activity and hydrogen peroxide concentration in plants in response to low-temperature. Physiol. Planta, vol. 65, no. 1, p. 51-56. https://doi.org/10.1111/j.1399-3054.1985.tb02358.x

Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., vol. 7, no. 9, p. 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9

Nafissatou, D. N., Dhuique-Mayer, C., Cisse, M., Dornier, M. 2011. Identification and thermal degradation kinetics of chlorophyll pigments and ascorbic acid from ditax nectar (Detarium senegalense JF Gmel). Journal of Agricultural and Food Chemistry, vol. 59, no. 22, p. 12018-12027. https://doi.org/10.1021/jf203582k

Ošťádalová, M., Tremlová, B., Straka, I., Pokorná, J., Čáslavková, P. 2014. Evaluation of significant pigments in green teas of different origin. Potravinarstvo, vol. 8, no. 1, p. 221-227. https://doi.org/10.5219/344

Palanivel, M., Venkateswaran, G., Sathish, G., Shanmugaselvan, V. 2020. Enhancing the quality of naturally oxidized tea with ascorbic acid. International Journal of Advanced Engineering Research and Science, vol. 7, no. 4, p. 403-409. https://doi.org/10.22161/ijaers.74.50

Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S., Dwivedi, U. N. 2017. A comprehensive review on function and application of plant peroxidases. Biochem. Anal. Biochem., vol. 6, p. 308. https://doi.org/10.4172/2161-1009.1000308

Platonova, N. B., Belous, O. G., Ostadalova, M. 2017. Comparative analysis of biochemical components of tea (Сравнительный анализ биохимических компонентов чая). Subtropical and Ornamental Gardening, vol. 61, p. 180-189. (in Russian)

Platonova, N., Astanin, A., Sedykh, S., Samarina, L., Belous, О. 2019. The composition and content of phenolic compounds in tea, grown in humid subtropics of Russia. Potravinarstvo Slovak Journal of Food Sciences, vol. 13, no. 1, p. 32-37. https://doi.org/10.5219/990

Prokopenko, I. A., Tuov, M. T. 1994. Dependence of the yield and quality of tea production from gathering and square surface of collecting sheet (Зависимость урожайности и качества чайной продукции от способов сбора листа и площади листосборной поверхности). Subtropical and ornamental gardening, vol. 38, p. 161-173. (in Russian)

Huang, R., Xia, R., Hu, L., Lu, Y., Wang, M. 2006. Antioxidant activity and oxygen-scavenging system in orange pulp during fruit ripening and maturation. Scientia Horticulturae, vol. 113, no. 2, p. 166-172. https://doi.org/10.1016/j.scienta.2007.03.010

Sharangi, A. B. 2009. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.): A review. Food Res. Int., vol. 42, no. 5-6, p. 529-535. https://doi.org/10.1016/j.foodres.2009.01.007

Shlyk, A. A. 1971. Determination of chlorophylls and carotenoids in green leaf extracts. Biochemical methods in plant physiology (Определение хлорофиллов и каротиноидов в экстрактах зеленых листьев. Биохимические методы в физиологии растений). Moscow: Nauka, p. 154-157. (in Russian)

Sinija, V. R., Mishra, H. N. 2008. Green tea: Health benefits. Journal of Nutritional & Environmental Medicine, vol. 17. – no. 4. – p. 232-242. https://doi.org/10.1080/13590840802518785

Skhalyakhov, A. A., Siyukhov, H. R., Tazova, Z. T., Lunina, L. V., Mugu, I. G. 2019. Phenolic compounds and antioxidant potential of wild-growing plant materials of the North Caucasus region. International Journal of Engineering and Advanced Technology, vol. 9, no. 2, p.5062-5071. https://doi.org/10.35940/ijeat.B4046.129219

Skotnicka, M., Chorostowska-Wynimko, J., Jankun, J., Skrzypczak-Jankun, E. 2011. The black tea bioactivity: An overview. Central-European Journal of Immunology, vol. 36, no. 4, p. 284-292.

Speckman, D. H., Stein, W. H., Moore, S. 1958. Automatic recording apparatus for use in the chromatography of amino acids. Anal. Chem., vol. 30, no. 7, p. 1190-1206. https://doi.org/10.1021/ac60139a006

Thongsook, T., Barrett, D. M. 2005. Heat inactivation and reactivation of broccoli peroxidase. J. Agric. Food Chem., vol. 53, no. 8, p. 3215-3222. https://doi.org/10.1021/jf0481610

Vinson, J. A. 2000. Black and green tea and heart disease: a review. Biofactors, vol. 3, no. 1-4, p. 127-132. https://doi.org/10.1002/biof.5520130121

Vorobyov, V. N., Nevmerzhitskaya, Y. Y., Khusnutdinova, L. Z., Yakushenkova, T. P. 2013. Practicum on plant physiology: educational and methodological guide (Практикум по физиологии растений: учебно-методическое пособие). Kazan, Russia : Kazan University, 80 p. https://repository.kpfu.ru/?p_id=94591 (in Russian)

Voskresenskaya, O. L., Alyabysheva, E. A., Polovnikova, M. G. 2006. Large workshop on Bioecology (Большой практикум по биоэкологии). Yoshkar-Ola, Mari, 107 p. ISBN 5-94808-239-3. (in Russian)

Willson, K. C. 1975. Studies on the mineral nutrition on tea. Plant and Soil, vol. 42, no. 3, p. 501-516. https://doi.org/10.1007/BF00009939

Wright, L. P. 2005. Biochemical analyses for identification of quality in black tea (Camellia sinensis) Pretoria, South Africa : dissertation theses. Pretoria, South Africa : University of Pretoria. 216 p.

Xu, X., Deng, J., Luo, D., Bao, Y., Liao, X., Gao, H., Wu, J. 2018. Comparative study of high hydrostatic pressure and high temperature short time processing on quality of clear and cloudy Se-enriched kiwifruit juices. Innovative Food Science & Emerging Technologies, vol. 49, p. 1-12. https://doi.org/10.1016/j.ifset.2018.07.010

Zhang, Q., Li, T., Wang, Q., LeCompte, J., Harkess, R. L., Bi, G. 2020. Screening tea cultivars for novel climates: plant growth and leaf quality of Сamellia sinensis cultivars grown in Mississippi, United States. Frontiers in Plant Science, vol. 11, p. 280. https://doi.org/10.3389/fpls.2020.00280

Zimmermann, B. F., Gleichenhagen, M. 2011. The effect of ascorbic acid, citric acid and low pH on the extraction of green tea: How to get most out of it. Food Chemistry, vol. 124, no. 4, p. 1543-1548. https://doi.org/10.1016/j.foodchem.2010.08.009

Published

2021-04-28

How to Cite

Belous, O., & Platonova, N. (2021). Biologically active substances of Camellia sinensis in a humid subtropical climate of Russia. Potravinarstvo Slovak Journal of Food Sciences, 15, 360–368. https://doi.org/10.5219/1440

Most read articles by the same author(s)